2020年第81回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

CS コードシェアセッション » 【CS.3】 3.3 情報フォトニクス・画像工学と4.4 Information Photonicsのコードシェアセッション

[9p-Z10-1~11] 【CS.3】 3.3 情報フォトニクス・画像工学と4.4 Information Photonicsのコードシェアセッション

2020年9月9日(水) 13:00 〜 17:00 Z10

鈴木 裕之(群馬大)、中野 和也(宮崎大)、原田 建治(北見工大)

15:00 〜 15:15

[9p-Z10-6] Deep Learning for Single-Pixel Imaging Without Normalization and Image Output

〇(PC)Masaki Yasugi1,2、Yasuhiro Mizutani3、Takeshi Yasui4、Hirotsugu Yamamoto1,2 (1.Utsunomiya Univ.、2.JST, ACCEL、3.Osaka Univ.、4.Tokushima Univ.)

キーワード:single-pixel imaging, deep learning

Single-pixel imaging is an interesting method to reconstruct an image by use of a photodetector and modulated illuminations. Although a large number of illumination patterns enable us to reconstruct a fine image, it takes so much time to obtain the image. Recently, researchers have tried to drastically reduce the number of illumination patterns by using deep learning, on numerical simulations and actual experiments. The reconstructed data itself is obtained as array data calculated by the correlation between detected intensity and illumination. However, the data is normalized and negative values seems to be changed to zero before the output to reconstructed image. In this study, we examine the effect of the type (array or image) and normalization of reconstructed data on its restoration through the neural network, by numerical simulation. Our neural network can restore fine image from reconstructed data without normalization and image output, particularly in the case of many masks.