2020年第67回応用物理学会春季学術講演会

講演情報

一般セッション(ポスター講演)

3 光・フォトニクス » 3.14 光制御デバイス・光ファイバー

[13p-PA2-1~11] 3.14 光制御デバイス・光ファイバー

2020年3月13日(金) 13:30 〜 15:30 PA2 (第3体育館)

13:30 〜 15:30

[13p-PA2-10] Convolutional Neural Network for Improving Spatial Resolution of BOCDR

Jelah Nieva Caceres1,2、Kohei Noda1、Heeyoung Lee3、〇Yosuke Mizuno1、Kentaro Nakamura1 (1.Tokyo Tech、2.NUS、3.SIT)

キーワード:optical fiber sensor, neural network, Brillouin scattering

We provide specific trial results of deep-learning-assisted Brillouin optical correlation-domain reflectometry (BOCDR). We employ a convolutional neural network to obtain the intrinsic Brillouin frequency shift distribution directly from the measured Brillouin gain spectrum (BGS) distribution in BOCDR. By using this algorithm, actual spatial resolution of the system can potentially be enhanced compared with nominal resolution conventionally calculated using a convolved BGS distribution. We show that the spatial resolution can be at least 4 times higher than the nominal value.