The 67th JSAP Spring Meeting 2020

Presentation information

Oral presentation

17 Nanocarbon Technology » 17.1 Carbon nanotubes & other nanocarbon materials

[15p-A403-1~6] 17.1 Carbon nanotubes & other nanocarbon materials

Sun. Mar 15, 2020 1:15 PM - 2:45 PM A403 (6-403)

Takahide Oya(Yokohama Natl. Univ.)

2:00 PM - 2:15 PM

[15p-A403-4] Diameter-Dependent Photoluminescence Energy Observed in Color Centers of Air-Suspended Single-Walled Carbon Nanotubes

Daichi Kozawa1, Xiaojian Wu2, Akihiro Ishii1, Jacob Fortner2, Keigo Otsuka1, Rong Xiang3, Taiki Inoue3, Shigeo Maruyama3,4, YuHuang Wang2, Yuichiro K. Kato3 (1.RIKEN, 2.Univ. Maryland, 3.Univ. Tokyo, 4.AIST)

Keywords:carbon nanotube, functionalization, color center

Color centers in single-walled carbon nanotubes attract interest because of their single-photon emission at room temperature in the telecom range [1, 2]. However, the lack of vapor-phase reaction route for forming color centers hinders the use of the excellent optical properties of air-suspended carbon nanotubes. We herein demonstrate the functionalization of air-suspended carbon nanotubes using iodobenzene as a precursor. The chemical reaction procedure is rationally designed to maintain the suspended structure and fluorescent properties of carbon nanotubes. The formed phenyl group serves as a color center and exhibits localized exciton emission peaks E11* and E11*- in addition to the free exciton emission peak E11. We characterize over 12 different chiralities, covering nanotubes with diameters d ranging from 0.981 to 1.29 nm, to elucidate the reactivity and optical property of the color centers. We find that the reactivity of iodobenzene scales as 1/d, where the inherent strain on the curvature of nanotubes promotes the reaction. The trapping potential of E11* and E11*- are both close to the singlet-triplet splitting. The minimum value of g(2)(0) in the photon correlation verifies the photon antibunching at the color centers. These findings should lead to further development of quantum photon sources that utilize color centers in carbon nanotubes.