2021年第68回応用物理学会春季学術講演会

講演情報

一般セッション(口頭講演)

12 有機分子・バイオエレクトロニクス » 12.2 評価・基礎物性

[17p-Z23-1~17] 12.2 評価・基礎物性

2021年3月17日(水) 13:30 〜 18:15 Z23 (Z23)

松本 卓也(阪大)、田中 裕也(東工大)、赤井 恵(北大)

17:15 〜 17:30

[17p-Z23-14] Physical Reservoir Device for Supervised Learning by Random Network of Single-Walled Carbon Nanotube/Porphyrin-Polyoxometalate

〇(D)Deep Banerjee1、Takumi Kotooka1、Takuji Ogawa2、Hakaru Tamukoh1、Yuki Usami1、Hirofumi Tanaka1 (1.KYUTECH、2.Osaka Univ)

キーワード:Reservoir computing, Single-walled carbon nanotube, Polyoxometalate

Reservoir computing (RC) has emerged an efficient architecture for supervised learning by training only the output weights. We demonstrate such a physical RC device using single-walled carbon nanotube/porphyrin-polyoxometalate random network in this work. By using the time-series tactile input grasping data of Toyota Human Support Robot, we succefully implemented the supervised prediction of one-hot-vector object classification of different hardness. We infer that intrinsic properties of non-linearity, high dimensionality and excho-state property of the material are indeed important for such reservoir learning and hence can be utilised for higher complex cognitive tasks in the near future.