2022年第83回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

10 スピントロニクス・マグネティクス » 10.1 新物質・新機能創成(作製・評価技術)

[22a-B201-1~11] 10.1 新物質・新機能創成(作製・評価技術)

2022年9月22日(木) 09:00 〜 12:00 B201 (B201)

窪田 崇秀(東北大)、岡林 潤(東大)

09:15 〜 09:30

[22a-B201-2] Materials exploration using ensemble machine learning with small dataset

Kenji Nawa1,2、Katsuyuki Hagiwara1、Yoshio Miura2、Kohji Nakamura1 (1.Mie Univ.、2.NIMS)

キーワード:machine learning, first-principles calculations, magnetism

Materials informatics combined with machine learning and density functional theory (DFT) calculations has a potential to accelerate materials design. Here, we propose a neural network (NN) approach for machine learning in which database is limited due to huge costs in the DFT calculations. We introduced ensemble machine learning algorithm into the NN and applied to typical ferromagnetic multilayers CoFe. Significant improvement of prediction accuracy, for example, for magnetic moment in CoFe was demonstrated by using the ensemble algorithm. Therefore, the present method can be utilized in materials informatics with small dataset.