2022年第83回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

23 合同セッションN「インフォマティクス応用」 » 23.1 合同セッションN「インフォマティクス応用」

[22a-M206-1~11] 23.1 合同セッションN「インフォマティクス応用」

2022年9月22日(木) 09:00 〜 12:00 M206 (マルチメディアホール)

沓掛 健太朗(理研)、旭 良司(名大)

11:45 〜 12:00

[22a-M206-11] Improving the language understanding in materials science: challenges and prospects

Luca Foppiano1、Pedro Ortiz Suarez2、Masashi Ishii1 (1.MDBG, MaDIS, NIMS、2.Data and Web Science Group, University of Mannheim, Mannheim, Germany)

キーワード:materials informatics, deep learning, tdm

We built a BERT model using a set of 794198 papers (142M sentences and 3.2B tokens) as the continuation of the pre-training of SciBERT (Mat+Sci+BERT).
We used the Tensor Processing Units (TPU) on Google Cloud Platform (https://cloud.google.com). We received support from Google as part of the program "Google Cloud for Researchers".
In this presentation, we discuss the details of our model and the evaluation on domain-specific (superconductors NER) or generic (physical quantities NER, CoLA) tasks.
In future, we plan to pre-train from scratch using the original BERT (Mat+BERT) and the RoBERTa (Mat+RoBERTa) implementations. To pre-train the RoBERTa model, we use the Jean Zay supercomputer (500 Nvidia V100 GPUs) thanks to the French National Center for Computer Science Inria.