2022年第83回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

23 合同セッションN「インフォマティクス応用」 » 23.1 合同セッションN「インフォマティクス応用」

[22p-M206-1~16] 23.1 合同セッションN「インフォマティクス応用」

2022年9月22日(木) 13:30 〜 18:00 M206 (マルチメディアホール)

知京 豊裕(物材機構)、大久保 勇男(物材機構)、冨谷 茂隆(ソニー)

14:45 〜 15:00

[22p-M206-6] Optimal control of growth interface shape through machine learning in the growth of InGaSb crystal under microgravity

〇(D)Rachid Ghritli1、Yasunori Okano1、Yuko Inatomi2,3 (1.Osaka Univ.、2.JAXA、3.SOKENDAI)

キーワード:Crystal Growth, Machine Learning, Reinforcement Learning

Growth of high quality of InGaSb crystals by Vertical Gradient Freezing under microgravity conditions was numerically simulated. Machine learning tools such as Bayesian Optimization and Reinforcement Learning were used to optimize the growth conditions. The study focuses on controlling the growth interface shape which directly affects the quality and homogeneity of the grown crystals. The system was subjected to a lower temperature gradient near the feed crystal and to crucible rotation with a rate ranging according to the obtained optimal strategy. Consequently, the interface deformation was considerably reduced, and a flatter growth interface could be maintained. The growth rate and solute concentration uniformity were also improved.