2022年第69回応用物理学会春季学術講演会

講演情報

一般セッション(口頭講演)

FS フォーカストセッション「AIエレクトロニクス」 » FS.1 フォーカストセッション「AIエレクトロニクス」

[22p-E102-1~14] FS.1 フォーカストセッション「AIエレクトロニクス」

2022年3月22日(火) 13:30 〜 17:30 E102 (E102)

内田 淳史(埼玉大)、丸亀 孝生(東芝)

14:45 〜 15:00

[22p-E102-5] Multimodal Spike Coding for Memcapacitive Neuromorphic System

押尾 怜穏1、澤田 篤志1、〇木村 睦1,2、張 任遠1、中島 康彦1 (1.奈良先端大、2.龍谷大先端理工)

キーワード:Multimodal Spike Coding、Memcapacitive Neuromorphic System

Neuromorphic systems have been investigated to accelerate machine learning calculations and reduce power dissipation by hardware architecture of SNN. Conventional rate coding is highly compatible with analog operation in ANN, and the technology developed recently can be employed. However, the rate coding needs many spikes and has problems of long latency and large power dissipation. Here, we introduce multimodal spike coding, which utilizes not only the spike frequency but the voltage amplitude and time width. The amount of information transmitted per spike increases than the conventional rate coding. Moreover, we adopt memcapacitors and charge pump circuits for synapse elements, which realize a voltage-domain synaptic operation consuming less power during switching. We have performed elementary analysis for the proposed ideas by the models and simulators supported by VDEC. The proposed ideas can successfully demonstrate SNN working.