The 9th International Conference on Multiscale Materials Modeling

講演情報

Symposium

D. Data-Driven and Physics-Informed Materials Discovery and Design

[SY-D2] Symposium D-2

2018年11月1日(木) 11:15 〜 12:30 Room8

Chair: Tilmann Hickel(MPIE, Germany)

[SY-D2] Using Machine-Learning to Create Predictive Material Property Models

Invited

Chris Wolverton (Northwestern University, United States of America)

Rational, data-driven materials discovery has the potential to make research and development efforts far faster and cheaper. In such a paradigm, computer models trained to find patterns in massive chemical datasets would rapidly scan compositions and systematically identify attractive candidates. Here, we present several examples of our work on developing machine learning (ML) methods capable of creating predictive models using a diverse range of materials data. As input training data, we demonstrate ML on both large computational datasets of DFT calculations, as implemented in the Open Quantum Materials Database (oqmd.org), and also experimental databases of materials properties. We construct ML models using a large and chemically diverse list of attributes, which we demonstrate can be used as an effective tool to automatically learn intuitive design rules, predict diverse properties of crystalline and amorphous materials, such as formation energy, specific volume, band gap energy, and glass-forming ability, and accelerate combinatorial searches.