[SY-K3] Creep rupture and Omori-Utsu law: Fiber bundle model approach
We study the dynamical aspects of a statistical-mechanical model for fracture of heterogeneous media: the fiber bundle model with various interaction range. Although the model does not include any nontrivial elementary processes such as nonlinear rheology or stochasticity, the system exhibits creep-like behaviors under a constant load being slightly above the critical value. These creep-like behaviors comprise three stages: in the primary and tertiary stages, the strain rate exhibits power-law behaviors with time, which are well described by the Omori-Utsu and the inverse Omori laws, respectively, although the exponents are larger than those typically observed in experiments. A characteristic time that defines the onset of power-law behavior in the Omori-Utsu law is found to decrease with the strength of disorder in the system. The analytical solution, which agrees with the above numerical results, is obtained for the mean-field limit. Beyond the mean-field limit, the exponent for the Omori-Utsu law tends to be even larger but decreases with the disorder in the system. Increasing the spatial range of interactions, this exponent is found to be independent of disorder and to converge to the mean-field value. In contrast, the inverse Omori law remains independent of the spatial range of interaction and the disorder strength.