[SY-N3] Shape fluctuation of metallic nanoclusters: observations from long-timescale simulations
Invited
Metallic nanoclusters are functional materials with many applications owing to their unique physical and chemical properties, which are sensitively controlled by their shapes and structures. An in-depth understanding of their morphology stability is therefore of crucial importance. It has been well documented by transmission electron microscopy (TEM) studies that metallic nanoclusters can interconvert between different isomers. However, the relevant mechanisms remain elusive because the timescales of such shape fluctuations are too short to be resolved experimentally and yet too long for conventional atomistic simulations. By employing a recently introduced Accelerated Molecular Dynamics method, Parallel Trajectory Splicing, we present simulations that reached timescales of milliseconds and thus provide a clear description of the dynamic process of the experimentally observed shape fluctuation in metallic nanoclusters. We observe transformations back and forth between face-centered-cubic (fcc) and structures with five-fold symmetry (decahedron or icosahedron). These transitions occur following either by a partial-dislocation-mediated twinning mechanism or by a surface-reconstruction driven process. The identified pathway is in remarkable agreement with the existing microscopy results and serves as further evidence that shape fluctuation can occur directly through thermal activation, without involving melting or other external factors.