*Alexander Pirozhkov1, A. Sagisaka1, K. Ogura1, T. Zh. Esirkepov1, B. Gonzalez Izquierdo1, E. A. Vishnyakov2, C. Armstrong3, T. A. Pikuz4,11, C. Arran5, S. A. Pikuz6, W. Yan7, T. M. Jeong2, S. Singh8, P. Hadjisolomou2, O. Finke2, G. Grittani2, M. Nevrkla2, C. Lazzarini2, A. Velyhan2, T. Hayakawa1, Y. Fukuda1, J. K. Koga1, M. Ishino1, Ko. Kondo1, Y. Miyasaka1, A. Kon1, M. Nishikino1, Y. V. Nosach9, D. Khikhlukha2, I. P. Tsygvintsev10, D. Kumar2, J. Nejdl2, P. V. Sasorov2, S. Weber2, D. Margarone2, Y. Kato11
, G. Korn2, H. Kiriyama1, K. Kondo1, C. Ridgers5, T. Kawachi1, M. Kando1, S. V. Bulanov2
(1. KPSI QST, 2. ELI-BL, 3. CLF RAL, 4. Osaka University, 5. University of York, 6. HB11 Energy Holdings, 7. Shanghai Jiao Tong University, 8. Institute of Plasma Physics ASCR, 9. Institute of Physics NASU, 10. ISTEQ AR, 11. Osaka University)
Gamma Flash is one of the most promising laser-plasma interaction regimes with predicted 30-40% conversion efficiency to γ rays. We generated γ-Flash with the J-KAREN-P laser. Here we describe achieving high on-target intensity (~1022 W/cm2), an experimental method to separate γ-Flash from Bremsstrahlung, and γ-Flash spectral shape reconstruction using scintillator stack spectrometer.