日本地震学会2022年度秋季大会

講演情報

ポスター会場(3日目)

特別セッション » S21. AIによる地震学の発展

[S21P] PM-P

2022年10月26日(水) 13:30 〜 16:00 P-1会場 (10階(1010〜1070会議室))

13:30 〜 16:00

[S21P-03] 深層学習による高精度な火山性地震の位相検出モデルの構築に向けて:様々なモデルの性能評価

*中村 勇士1、金 亜伊1、上松 大輝1、行竹 洋平2、安部 祐希3 (1. 横浜市立大学、2. 東京大学地震研究所、3. 神奈川県温泉地学研究所)

火山地帯では度々火山活動に関連した活発な群発地震が発生し、それらの迅速な検出、検測は火山防災において非常に重要である。しかし現在、これらのプロセスは最終的には人間の判断に委ねられ、膨大な時間とコストを要し、リアルタイムでの詳細な検証は不可能である。本研究ではこの問題を解決するため、近年多くの地震観測で研究が進んでいる機械学習の適用を試みた。現在、すでに膨大な訓練データを用いた学習済みモデルがいくつか公開されている。それらをそのまま適用して問題無い事例もあるが、学習データの地域依存性も報告されている(Münchmeyer et al., 2022)。本研究のターゲットは火山地帯という特殊な地域で発生する地震であるので、主に地殻内地震の波形で学習した既存の学習済みモデルは適用が難しい可能性がある。本研究では箱根火山で発生する地震をより精度良く検測できるモデルの構築を目指し、まずZhu and Beroza(2018)によって構築されたPhaseNetのアーキテクチャを利用して、箱根火山で発生した1999年から2020年までの約22万個の地震波形に対して性能評価を行った。結果として箱根火山の地震データで学習したモデルの検出率は、既存のPhaseNetの学習済みモデルの検出率と比較して大幅に向上した。PhaseNetではU-Net(Ronneberger et al., 2015)の構造が採用されているが、次のステップとしてそれに再帰残差ユニットを追加したR2U-Net、注意機構を追加したAttention U-Net、再帰残差ユニットと注意機構の両方を追加したR2AU-Netを用いた学習モデルを構築した。さらに、これらのモデルをPhaseNetの学習時に用いた箱根データを用いて学習することで、その性能評価を行った。また、上記の学習済みモデルをベースとして転移学習を行うことにより、よりデータ数の規模が小さい別の火山地帯での精度の良い地震波検測モデルの構築を試みる。