[3P-0708] Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
○Qingbo Wang1, 2, 3, 4, David Kelley5, Jacob Ulirsch2, 3, 6, Masahiro Kanai1, 2, 3, 4, Shuvom Sadhuka2, 7, Ran Cui2, 3, Carlos Albors2, 3, Nathan Cheng2, 3, Yukinori Okada1, 8, 9, Project The Biobank Japan10, Francois Aguet2, Kristin Ardlie2, Daniel MacArthur11, 12, Hilary Finucane2, 3
(1.Dept. of Stat. Gen., Grad. Sch. of Med, Osaka Univ., 2.Broad Institute of MIT and Harvard, 3.Analytic and Translational Gen. Unit, Massachusetts General Hospital, 4.PhD prog. in Bioinfo. and Integ. Gen., Harvard Med. School, 5.Calico Life Sciences, 6.ハーバードメディカルスクール・生命科学, 7.Harvard College, 8.IFReC., Osaka Univ., 9.Inst. for Open and Transdisciplinary Res. Init., Osaka Univ., 10.Inst. of Med. Sci., Univ. of Tokyo, 11.Centre for Pop. Gen., Garvan Inst. of Med. Res., 12.Centre for Pop. Gen., Murdoch Children's Res. Inst.)
f . Omics(5 . Information / System / Technology)