Preparation of silver nanoparticles stabilized by fullerenol

(¹*Grad. Sch. Eng., Osaka Univ.*, ²*ICS-OTRI, Osaka Univ.*) ○Wildatus Sa'diyah Sugianto,¹ Mark Kristan Espejo Cabello,¹ Yuta Uetake,^{1,2} Hidehiro Sakurai,^{1,2} **Keywords**: Silver Nanoparticles, Colloidal, Metal Nanoclusters, Fullerenol

Fullerenols (polyhydroxylated fullerene) are currently used in several scientific and industrial fields¹. Recently, our group have reported that fullerenols ($C_{60}(OH)_n$) (n=12, 36) work as a surfactant for metal nanoparticles (NPs), such as Au: $C_{60}(OH)_n$ and Pt: $C_{60}(OH)_n$,^{2,3} to form a colloidal dispersion in water. Au: $C_{60}(OH)_n$ colloids exhibited a high catalytic activity toward the reduction of 4-nitrophenol while Pt: $C_{60}(OH)_{12}$ implied high activity on electrocatalyst after pyrolyzed at 300 °C. In this study, we report the preparation of silver nanoparticles stabilized by $C_{60}(OH)_{12}$ (Ag: $C_{60}(OH)_{12}$).

Ag:C₆₀(OH)₁₂ was prepared through a liquid phase reduction method; NaBH₄ was added to the mixture of C₆₀(OH)₁₂ and AgNO₃ in water to afford a brownish dispersion of Ag:C₆₀(OH)₁₂. The generation of nanoparticles was confirmed by TEM and XAS experiments to find that the Ag NPs with the particle size of approximately 8 nm was formed (Figure 1). In one hand, the peak height of Ag:C₆₀(OH)₁₂ at Ag K-edge X-ray absorption near edge structure (XANES) was different with those of Ag foil and Ag₂O, suggesting the generation of Ag⁰ NPs. The catalytic activities of Ag:C₆₀(OH)₁₂ will also be discussed in the presentation.

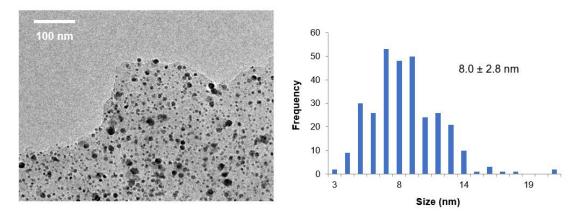


Figure 1. TEM data of Ag:C₆₀(OH)₁₂

- K.N. Semenov, N.A Charykov, V.N. Postnov, V.V. Sharoyko, I.V. Vorotyntsev, M.M. Galagudza, I.V. Murin, Progress in Solid State Chemistry 2016, 44, 59-74
- 2) K. Kokubo, M. K. E. Cabello, N. Sato, Y. Uetake, H. Sakurai, ChemNanoMat 2020, 6, 524.
- 3) M. K. E. Cabello, Y. Uetake, Y. Yao, S. Kuwabata, H. Sakurai, Chem. Asian J. 2021, 16, 2280.