
Formation and its mechanism of phosphine-protected gold cluster cations by magnetron sputtering method

(¹Graduate School of Science, The University of Tokyo, ²Elements Strategy Initiative for Catalysts and Batteries, Kyoto University) O Lewei Wang,¹ Kiichirou Koyasu,^{1,2} Tatsuya Tsukuda,^{1,2}

Keywords: Magnetron Sputtering; Ligand-Protected Clusters; Gold Superatoms; Polyethylene Glycol

We prepared gold clusters by magnetron sputtering of a gold target onto a polyethylene glycol (PEG) solution of 1,3-bis(diphenylphosphino)propane (dppp). The products were characterized by electrospray ionization (ESI) mass spectrometry and UV-vis absorption spectroscopy as a function of the dppp concentration ([dppp]). The ESI mass spectra in Figures 1a and 1b indicate formation of known magic clusters and their growth in the sequence of $[Au(dppp)_n]^+$ (n = 1, 2) \rightarrow $[Au_2(dppp)_n]^+$ (n = 2 - 4) \rightarrow $[Au_6(dppp)_n]^+$ (n = 3, 4) \rightarrow $[Au_{11}(dppp)_5]^{3+}$ with decrease in [dppp]. The optical spectrum at the high [dppp] (= 20 mM) is dominated by the peak at ~580 nm due to $[Au_6(dppp)_4]^+$ and that at <350 nm due to $[Au_{(dppp)_n}]^+$ and $[Au_2(dppp)_n]^{+,1}$. With the reduction of [dppp], a new peak at ~430 nm due to $[Au_{(1}(dppp)_5]^{3+}$ was developed,²⁾ followed by the emergence of continuous band that increases toward the short wavelength due to larger, neutral Au clusters. These results demonstrate that atomically-defined magic Au clusters such as $[Au_6(dppp)_4]^{2+}$ and $[Au_{11}(dppp)_5]^{3+}$ could be synthesized using the magnetron sputtering onto the ligand solution with controlled concentration.

Interestingly, cationic complex $[Au(dppp)_2]^+$ was detected as major species although neutral Au atoms are mainly deposited onto the PEG solution. Density functional theory (DFT) calculation showed that the ionization energy of $Au(dppp)_2$ is smaller than those of alkali metals. Thus, we speculated that [Au(dppp)₂]⁺ spontaneously ionized undergo the growth with Au(0)atoms to form $[Au_6(dppp)_4]^{2+}$ and $[Au_{11}(dppp)_5]^{3+}$.

Figure 1. (a) Positive-mode ESI-mass spectra of the products with defined [dppp] and (b) enlarged view of panel (a). (c) UV-vis absorption spectra. Notation $(a, b)^{q+}$ in (a) and (b) represents $[Au_{a}(dppp)_{b}]^{q+}$.

1) Y. Shichibu, Inorg. Chem. 2013, 52, 6570. 2) Y. Shichibu, Chem. Commun. 2012, 48, 7599.