固相界面におけるアスタチン-211 ラベル化反応と簡易精製システムへの応用 (福島大理工¹, 福島医大・先端研², Wake Forest Univ.³, 福島大 IER⁴) ○荒野 真結¹, 鷲山 幸信², 高橋 和弘², Willie Hinze³, 高貝 慶隆^{1,4} Astatine-211 labeling reaction on interface of solid phase and application to simple purification system (¹Faculty of Symbiotic Systems Science, Fukushima Univ., ²ACRC, Fukushima Med. Univ., ³Wake Forest Univ., ⁴IER, Fukushima Univ.) OMayu Arano¹, Kohshin Washiyama², Kazuhiro Takahashi², Willie L. Hinze³, Yoshitaka Takagai^{1,4} Astatine-211 (²¹¹At) is promising as a radio-therapeutic drug for cancer due to its alphaemitting characteristics. However, it is not easy to handle because the ²¹¹At has only a 7.2 hr short half-life, and there exist no stable isotopes. Thus, the total process for the synthesis of ²¹¹At-labeled compounds is required to be simplified. In this study, we have developed a simple synthesis/purification total system for ²¹¹At-labelling reaction basin on the interface reaction on micropolymeric incorporating gold nanoparticle (AuNP-MP). 3-Tributylstannylbenzylamine adsorbed on AuNP-MP of 550 µm particle size was reacted with ²¹¹At, and resultant 3-[²¹¹At]astatobenzylamine (3-[²¹¹At]ABA) was obtained as a precursor of radiopharmaceuticals. By carrying out the labeling reaction on the MP, the 3-[²¹¹At]ABA was released into the solution. The purification was facilitated by use of the MP. *Keywords: solid phase synthesis; gold nanoparticles; astatine-211; radioisotope labeled compound; immobilization of nanoparticles micropolymer* アスタチン-211(211 At)は放射線免疫療法に用いることができる α 線放出核種として近年注目を集めているが,安定同位体がなく半減期が短いため,取り扱いが容易ではない。そのため,創薬における 211 At 標識化合物の合成プロセスを簡易化する必要がある。本研究では,金ナノ粒子固定化マイクロポリマー(AuNP-MP)を用いた 211 At の簡便な標識プロセスを開発した。粒径 550 μ m の AuNP-MP に吸着させた 3-トリブチルスタニルベンジルアミンを 211 At と反応させ,放射性医薬品の前駆体である 3-[211 At]アスタトベンジルアミン(3-[211 At]ABA)を合成することができた。AuNP-MP上での標識反応であるが,生成物である 3-[211 At]ABA が溶液中に放出された。このポリマーにより,精製過程を簡便にすることが可能となった。