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Statistical Machine Learning for Inverse Problems in Materials Research ('The Institute of
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Data-driven science is advancing rapidly and transform the world around us. As such,
machine learning has received considerable attention as a key driver to the next frontier of
materials science, enabling us to reap substantial time and cost savings in the discovery and
development of innovative materials. The objective of designing materials is to identify a set
of design variables that exhibits desired properties. Here, we conduct a two-stage workflow
that consists of forward and backward predictions. The objective of the forward problem is to
predict the properties of any given design variable. The task of the inverse problem is to identify
promising design candidates that exhibit desired properties by solving the inverse mapping of
the forward model. This talk describes a basic concept and key technologies of machine
learning for the inverse materials design, such as, probabilistic inference using generative
machine learning models, explainable machine learning, and adaptive design of experiments.
Without going into technical details, the essence of these machine learning techniques is
illustrated with various applications taken from polymer design [1, 2, 3], computational design
of synthetic reaction routes [4], prediction and discovery of new quasicrystals [5], integration
of computational chemistry and machine learning based on adaptive design of experiments,
transition learning [6, 7, 8, 9], microstructure prediction for composite materials using deep
generative models [10]. In particular, I discuss use cases and strategies for obtaining human-
interpretable knowledge from black-box models of machine learning.
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