B304-1am-03

Role of potassium additive on the catalytic performance of cobalt for CO₂-FTS

(¹ School of Engineering, The University of Tokyo, ² Department of Materials and Life Science, Seikei University, ³ Institute of Industrial Science, The University of Tokyo) OShohei Harada,¹ Shigeo Satokawa,² Masaru Ogura³

Keywords: CO₂ hydrogenation, Fischer-Tropsch synthesis, Cobalt catalyst

Fischer-Tropsch Synthesis (FTS) using CO₂ (CO₂-FTS) is one of the potential technologies to transform atmospheric CO₂ to a liquid synthetic fuel.¹ Cobalt-based catalysts have been used in FTS, and long-chain hydrocarbons are produced on a commercial scale. On the other hand, the catalyst is known to form methane dominantly (>90%) along with short-chain gaseous hydrocarbons (C₂-C₄) in CO₂-FTS.² Adding potassium in the Co catalyst has been demonstrated to reduce the methane selectivity to 55%, and to increase carbon chain growth to form liquid hydrocarbons (C₅₊).³ The promotive effect of K is promising for CO₂-FTS, however still now it has not been clarified in detail yet. In this work, the role of K is investigated by combination of FT-IR, XPS, and STEM from the viewpoints of location and interaction to Co catalysts.

The catalytic activity of K-Co/SiO₂ resulted in a low methane selectivity and a high C_{2-4} and C_{5+} selectivity. The liquid phase products included not only n-alkanes from C_5 to C_8 but also C_{2+} alcohols and acetic acid. Probe FT-IR and XPS spectra of Co2*p* regions reveal that potassium keeps the oxidized Co surface even after reduction prior to the FTS. Potassium is possible to exist on the cobalt surface of K-Co/SiO₂, and the oxidized Co surface supplies a weakly basic site for promoting CO₂ adsorption. Therefore, the role of potassium in CO₂-FTS is maintaining the oxidized Co species to promote CO₂ activation by locating on the Co surface.

This study is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Catalyst	CO ₂ conversion / %	CO selectivity /%	Hydrocarbon selectivity / %		
			CH ₄	C ₂₋₄	C ₅₊ *
Co/SiO ₂	21	10	90	0.6	9.1
K-Co/SiO ₂	16	31	56	27	16
Co/Na-Y	25	8.9	91	1.0	8.0
Co-Y	3.0	< 0.1	< 0.1	< 0.1	< 0.1

Table 1. Catalytic activities for CO₂-FTS at 300 °C under 1 MPa

* Including C_{2+} alcohols and acetic acid

1) M. D. Porosoff, B. H. Yan, J. G. G. Chen, *Energy Environ. Sci.* **2016**, *9*, 62. 2) C. G. Visconti, L. Lietti, E. Tronconi, P. Forzatti, R. Zennaro and E. Finocchio, *APPL. CATAL. A-GEN.* **2009**, 355, 61. 3) R. A. Iloy, K. Jalama, *Catalysis* **2019**, *9*, 18.