短期 CO₂ 地中固定化開発のための超臨界 CO₂ 条件下での触媒による CO₂ 転換挙動に関する実験的研究

((国研) 産総研 ^{1,2}) ○藤井 孝志 ¹・朝比奈 健太 ¹・西岡 将輝 ² Experimental investigation of CO₂ catalytic behavior in a supercritical CO₂ state for a rapid CO₂ stabilization into geological storage (¹Research Institute of Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), ² Research Institute Chemical Process Technology, AIST) ○ Takashi Fujii, ¹ Kenta Asahina, ¹ Masateru Nishioka, ²

CO₂ capture and storage (CCS) technology is a vital tool for deep reduction of anthropogenic CO₂ emissions from CO₂ large point sources (e.g., power generation). Long-term stabilization of storing CO₂ into storage reservoirs is a critical step for safe implementation of this technology. Indeed, majority of the CO₂ will remain as an immiscible phase of CO₂ in its supercritical state, which is not dissolved into formation water. With respect to such challenge, we propose a novel CCS technology through CO₂-nanocatalyst injection, which directly converted the CO₂ into hydrocarbon compounds within storage reservoirs. Our results showed that under conditions of CO₂ geological storage, the presence of Ni nanocatalyst with a little water provided sufficient catalytic activity regarding CO₂ hydrogenation to afford various long-chain n-alkanes.

Keywords: CCS, catalytic conversion, Ni, nanocatalyst, supercritical CO2

有力な CO_2 削減方法の一つに、 CO_2 回収・貯留(CCS)技術が挙げられる。本技術は、主に、火力発電所や製鉄所などの大規模 CO_2 排出源からの CO_2 を直接地中に貯留するものであり、想定される地中貯留条件下では超臨界状態となる。安全な CCS 技術の実施のためには、圧入した CO_2 を長期にわたり安定的に貯留することが必要不可欠である。しかしながら、大部分の CO_2 が、地層水に溶解しない、つまり超臨界 CO_2 状態のままで存在することが予想 11 されている。本研究では、 CO_2 の早期固定化を目的に、 CO_2 圧入時にナノ触媒を添加することで、地中貯留層内で CO_2 を直接安定な固体や液体の炭化水素に転換するための技術開発を行っている。これまで、地下 1km の模擬 CO_2 地中貯留条件($40\sim50$ °C、約 10MPa)下で、Ni ナノ触媒と少量の水を用いて CO_2 転換反応実験を行ったところ、 CO_2 の一部が、様々な長鎖飽和炭化水素化合物に転換することが明らかとなった。

1) Reactive transport modelling of CO₂ storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. J. W. Johnson, J. J. Nitao, K. G. Knauss, Geological Society Special Publication **2004**, 233, 107.