ZrO₂-CeO₂ 担持 Cu 触媒を用いたエタノールの CO₂改質による CO および H₂の製造 (三重大院工) 鳩岡悠生・橋本忠範・○石原 篤・ CO and H₂ formation by CO₂ reforming of ethanol using ZrO₂-CeO₂-supported Cu catalyst (*Graduate School of Engineering, Mie University*) Yuuki Hatooka, Tadanori Hashimoto, OAtsushi Ishihara Recently, much attention has been focused on chemical transformation of CO₂ and many attempts have been investigated. Among them, renewable ethanol CO₂ reforming for synthesis gas or hydrogen formation is one of promising processes. In our laboratory, Co as a major active species and CeO₂ and ZrO₂ as supports were used to make Co/CeO₂-ZrO₂ catalysts by the sol-gel method, which were effective in steam reforming of ethanol. When Co/CeO₂-ZrO₂ catalysts were tested in CO₂ reforming of ethanol, high yields of CO and H₂ were not obtained. In the present study, Cu as a major active species and CeO₂ and ZrO₂ as supports were used to make Cu/ CeO₂-ZrO₂ catalysts by the sol-gel method, which were tested in CO₂ reforming of ethanol. Copper(II) nitrate trihydrate was used, CeO₂ was a reference catalyst and the precursor of ZrO₂ was zirconium butoxide. When the reaction was performed at Cu 10%, catalyst 0.25g and CO₂:Ethanol =5mol/mol, conversions of ethanol and CO₂ were high at 650°C and higher and CO and H₂ formation increased with increasing temperature regardless of the ratio of CeO ₂ and ZrO₂. When the ratio of CeO₂ and ZrO₂ was 1:1, yields of H₂ and CO at 700°C reached 75% and >100%, respectively. When H₂ and CO are formed according to $C_2H_5OH + CO_2 \rightarrow$ 3H₂ + 3CO, it seems that coke deposited at lower temperature would be reformed to CO at 700°C. Keywords: CO_2 reforming of ethanol, ZrO_2 - CeO_2 -supported Cu catalyst, Formation of CO and H_2 CO_2 の化学的変換には大きな関心が寄せられ、多くの試みが検討されている。その中で、再生可能なエタノールの CO_2 改質は、合成ガスあるいは水素製造の有望なプロセスである。我々はこれまで、触媒の活性金属に Co、担体として CeO_2 と ZrO_2 を用いた Co/CeO_2 - ZrO_2 触媒を Sol-gel 法で調製し、エタノールの水蒸気改質に有効であることを報告してきた Sol-2。この Co/CeO_2 -Sol2を開媒をエタノールの Sol3の質に用いたが、高い Sol3の Sol3と Sol4の Sol4の Sol5の Sol6の Sol6の Sol7の - 1) A. Andou, et al., Fuel Process. Technol., 197 (2020) 106203, DOI: 10.1016/j.fuproc.2019.106203 - 2) H. Tsujino, et al., RSC Adv., 2021, 11, 8530–8539. DOI: 10.1039/d1ra00141h