
Synthesis and Photocatalytic Hydrogen Peroxide Production on Zr-MOF with Missing-Linker Defects

(¹Graduate School of Engineering, Osaka University, ²Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, ³JST PRESTO) ○Yoshifumi Kondo,¹ Yasutaka Kuwahara,^{1,2,3} Kohsuke Mori,^{1,2} Hiromi Yamashita^{1,2} Keywords: Metal-Organic Framework; Hydrogen Peroxide; Structural Defect

Metal-organic frameworks (MOFs) are a class of coordination compounds composed of metal clusters and organic linkers. Their porosity, high surface area, and modularity have a great potential for catalyst materials. Some amine-functionalized MOFs were reported to be active toward photocatalytic hydrogen peroxide (H₂O₂) production via O₂ reduction.¹ An amine-functionalized Zr-based MOF (UiO-66-NH₂) is expected to be effective for photocatalytic H₂O₂ production due to high stability and large surface area. However, it shows limited photocatalytic activity despite the visible-light absorption property. Previous theoretical and experimental studies have showed the introduction of missing-linker sites in UiO-66-NH₂ is an effective approach to enhance the photocatalytic activity due to increasing charge transfer capability.^{2,3} In this work, we synthesized defective UiO-66-NH₂ and applied it to photocatalytic H₂O₂ production.⁴

Defective UiO-66-NH₂ (UiO-66-NH₂-X; X is the amount of the acetic acid added during the synthesis) was synthesized via solvothermal method with acetic acid. Based on ¹H-NMR and TG-DTA analysis, the amount of missing-linker defects in UiO-66-NH₂-X increased by increasing concentration of acetic acid added. UiO-66-NH₂-X was dispersed in an O₂-saturated

acetonitrile solution containing benzyl alcohol as an electron donor. H_2O_2 was produced over all samples with light ($\lambda >$ 350 nm) irradiation. The produced amount of H_2O_2 utilizing defective UiO-66-NH₂-X was higher than that of the pristine UiO-66-NH₂ (Fig. 1). The improved amount of H_2O_2 obtained by UiO-66-NH₂-X was attributed to not only the promotion of reaction rate but also the suppression of H_2O_2 decomposition by introducing missing-linker defects.

Fig. 1 Photocatalytic H_2O_2 production under light irradiation using UiO-66-NH₂ and defective UiO-66-NH₂-X (X = 0.5, 1.0, 1.5).

Y. Isaka, Y. Kondo, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, *Chem. Commun.* 2018, 54, 9270.
A. D. Vos, K. Hendrickx, P. V. D. Voort, V. V. Speybroeck, K. Lejaeghere, *Chem. Mater.* 2017, 29, 3006.
X. Ma, L. Wang, Q. Zhang, H.-L. Jiang, *Angew. Chem. Int. Ed.* 2019, 58, 12175.
Y. Kuwahara, K. Mori, H. Yamashita, *J. Phys. Chem. C* 2021, *125*, 27909.