A Fundamental Look at the Lab-to-Fab Transition of

a New Permanent Magnet

(¹*Institute for Chemical Research, Kyoto University*) \bigcirc T. Thuy Trinh,¹ Ryota Sato,¹ Toshiharu Teranishi¹

Keywords: Permanent Magnet Materials

SmFe₁₂ (ThMn₁₂, *I*4/*mmm*) compound has excellent intrinsic magnetic properties, superior to the current high-end-magnet Nd₂Fe₁₄B compound.¹ Yet, the synthesis of SmFe₁₂-based bulk materials with sufficiently large coercivities (H_c) for fabricating permanent magnets has not been realized. The most obvious obstacle to improving H_c is critical issues of microstructure, especially the inevitable formation of magnetically-soft SmFe_x surface.

Recently, we have already succeeded in preparing $Sm(Fe,Co,Ti)_{12}$ microparticles with ever-larger H_c and remanence (M_r) based on precise control over their microstructure by advanced chemical synthesis, opening a new era of $SmFe_{12}$ -based permanent magnet materials.^{2,3} In particular, synthesized $Sm(Fe,Co,Ti)_{12}$ microparticles possessed various surfaces from Sm-enriched and Ti-enriched surfaces to a depleted surface (Fig. 1A), and μ_0H_c and μ_0M_r values of their isotropic powders at 300 K were as large as 1.6 T and 1.2 T, respectively (Fig. 1B).

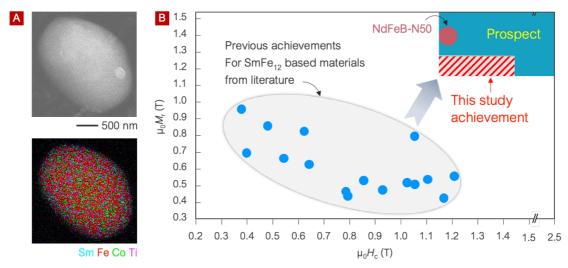


Fig. 1 A. SEM image and EDS elemental map of a $Sm(Fe_{0.8}Co_{0.2})_{11}Ti$ microparticle. B. Extrinsic magnetic properties of isotropic $Sm(Fe_{0.8}Co_{0.2})_{11}Ti$ micropowders at 300 K. NdFeB-N50 is a commercial Nd₂Fe₁₄B-based magnet.

- 1. T. T. Trinh et al., Sci. Technol. Adv. Mater. 2021, 22, 37–54.
- 2. 特願 2021-079367
- 3. T. T. Trinh et al., Manuscript in preparation.