
Solar methanol production from photothermal catalytic CO₂ hydrogenation over Ru/In₂O₃ catalysts

Bowen Deng^{1,2}, Hui Song¹, Qi Wang^{1,2}, Jinhua Ye^{1,2} (¹ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institutes for Materials Science (NIMS), ²Graduate School of Chemical Science and Engineering, Hokkaido University)

Keywords: Photothermal catalysis, CO₂ hydrogenation, methanol production, Ru/In₂O₃

Photothermal catalytic CO₂ hydrogenation to methanol (CH₃OH) using renewable H₂ is a promising method to convert solar energy into chemical energy, contributing to the "methanol economy" proposed by George A. Olah ^[1]. However, it is still impeded from industrial application due to the relatively low conversion efficiency and poor selectivity under mild conditions. Among the investigation of efficient catalysts, In₂O₃ has recently been considered as a potential candidate for methanol production ^[2,3], yet still needing further development.

Herein, we report a Ru/In₂O₃ catalyst synthesized by a facile method for effective photothermal methanol production from CO₂ hydrogenation under atmosphere pressure. The Ru/In₂O₃ catalyst can effectively catalyze methanol synthesis while inhibit the competitive reverse water-gas shift reaction and exhibit better activity and selectivity in comparation with reported works. Mechanism studies demonstrate that the synergy of photothermal heating/conversion and light-promotion contributes to the effective methanol production, and the interaction between Ru and In₂O₃ enhances the decomposition of CO₂ and H₂ on the catalyst surface, which is confirmed by DFT calculations. This work reports a potential efficient catalyst for photothermal CO₂ hydrogenation to methanol.

G. A. Olah, Angewandte Chemie, 2005, 44(18), 2636-2639.
X. Jiang, et al., Chemical Reviews, 2020, 120 (15), 7984-8034.
J. Zhu, et al., ACS Catalysis, 2021, 11, 11371-11384.