気相昇温脱離法を用いたセリウム酸化物クラスターと水素分子の 反応研究 (東大院総合) ○永田 利明・宮島 謙・真船 文隆 Reactions of Cerium Oxide Clusters with Hydrogen Molecules Studied by Gas-Phase Thermal Desorption Spectrometry (School of Arts and Sciences, The University of Tokyo) OToshiaki Nagata, Ken Miyajima, Fumitaka Mafuné Hydrogen atom transfer is a redox process and important in biochemistry and synthetic chemistry. We investigated hydrogen abstraction by cerium oxide clusters, which are known to oxidize CO and NO, $^{1,2)}$ by reacting $Ce_nO_m^+$ clusters with H_2 . $Ce_nO_mH_k^+$ clusters were formed by the reaction at room temperature. After the following heating, for n = 3, Ce₃O₇H₂⁺ released an OH radical to form Ce₃O₆H⁺ at ~600 K, while the other species mainly released O₂ and H₂O (Fig. 1), Ce₃O₆H⁺ is considered stable because of its closed-shell electron configuration. DFT calculations suggested that the OH release requires $\Delta E = 1.60$ eV (Fig. 2). We will further investigate H atom abstraction from other molecules and reactivity of Ce_nO_{2n}H⁺ (e.g., Ce₃O₆H⁺). Keywords: Gas-Phase Clusters, Temperature Programmed Desorption, Ceria, Redox Reaction, Water 水素原子移動反応は生化学や合成化学 で重要なプロセスであり、一般に酸化還元 反応である。セリウム酸化物クラスター Ce_nO_{2n}+は CO や NO に O 原子を 1 つ与え る酸化剤として働く $^{1,2)}$ 。本研究では $Ce_nO_m^+$ に H₂ を反応させ、H 原子を引き抜き保持 する能力について検討した。 室温でCe_nO_m+にH₂が反応することでCe, O, H からなる $Ce_nO_mH_k^+$ が得られた。これ を加熱すると、n=3 について Fig. 1 に示す ように、主に O_2 や H_2O の脱離が見られ、 約 600 K で式(1)の OH 脱離を示した。 $Ce_3O_7H_2^+ \rightarrow Ce_3O_6H^+ + OH$ 不安定であるはずの OH ラジカルが生成し たのは、Ce₃O₆H⁺が Ce⁴⁺, O²⁻, H⁺からなる閉 殻電子構造を持つことによる安定化のた めと考えられる。量子化学計算(B3LYP/ D95++(d,p), SDD)により、反応(1)は ΔE = 1.60 eV の吸熱過程と見積もられた(Fig. 2)。 今後、他の分子からの H 原子の引き抜き や、H 原子を持つ Ce₃O₆H⁺などの反応性に ついて検討する。 **Fig. 1.** Relative intensities of $Ce_3O_mH_k^+$ formed by reaction with H₂ followed by heating as functions of temperature. Fig. 2. Calculated structures and energetics. - 1) T. Nagata, K. Miyajima, F. Mafuné, J. Phys. Chem. A 2015, 119, 1813. - 2) T. Nagata, K. Miyajima, F. Mafuné, J. Phys. Chem. A 2015, 119, 10255.