
Physical properties of a quantum spin liquid candidate κ -(ET)₂Cu[Au(CN)₂]Cl at low temperature and high pressure

(¹*Graduate School of Science, Kyoto University*) ○Yuki Tanaka,¹ Mitsuhiko Maesato,¹ Shinya Tomeno,¹ Yukihiro Yoshida,¹ Hiroshi Kitagawa¹

Keywords: Quantum spin liquid; Properties at high pressure; Transport measurements; Triangular lattices; Frustration

Quantum spin liquids (QSLs) have attracted much attention because they are exotic quantum phases of matter where long-range magnetic ordering is suppressed by the strong spin frustration. So far, several QSL candidates with triangular lattice have been reported in organic conductors.^{1,2} However, all of them have disorder in the crystal structures. κ -(ET)₂Cu[Au(CN)₂]Cl (ET: bis(ethylenedithio)tetrathiafulvalene) is the first triangular-lattice organic QSL candidate with disorder-free polyanions.³ This salt has a layered structure composed of alternating ET and {Cu[Au(CN)₂]Cl⁻}_∞ polyanion layers stacking along the *a* axis (Figure 1). This salt shows a Mott insulating behavior at ambient pressure but shows no magnetic order down to 0.45 K.⁴

In this study, we have performed transport measurements of κ -(ET)₂Cu[Au(CN)₂]Cl at high pressure and low temperature down to 0.5 K and investigated the pressure–temperature phase diagram in the vicinity of the QSL state.

Figure 1. (a) Crystal structure of κ -(ET)₂Cu[Au(CN)₂]Cl viewed along the *b* axis. (b) Anion layer structure viewed along the *a* axis.

- 1) Y. Zhou, K. Kanoda, T. Ng, Rev. Mod. Phys., 2017, 89, 025003.
- M. Maesato, Recent Topics on Organic Spin Liquid Candidates. In: K. Nishimura, M. Murase, K. Yoshimura (eds) *Creative Complex Systems. Creative Economy*, 2021, Springer, Singapore.
- 3) S. Tomeno et al., Inorg. Chem., 2020, 59, 8647.
- 4) S. Tomeno et al., The 99th CSJ Annual Meeting, 2019, 3D3-12