Effects of Formamides on Intermolecular Vibrations of 1-Methyl-3octylimidazolium Tetrafluoroborate

(¹Department of Chemistry, Chiba University, ²Graduate School of Science and Engineering, Saga University, ³Faculty of Science and Engineering, Saga University) OMasatoshi Ando,¹ Yue Peng,¹ Atsuya Tashiro,² Masahiro Kawano,² Toshiyuki Takamuku,³ Hideaki Shirota¹ Keywords: Ionic liquid; Molecular liquid; Mixture; fs-RIKES; Low-frequency spectrum

In this study, we have investigated the low-frequency spectra of 1-methyl-3octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with formamide (FA), *N*methylformamide (NMF), and *N*,*N*-dimethylformamide (DMF) using femtosecond Raman induced Kerr effect spectroscopy (fs-RIKES).^{1,2} Because these formamides have different hydrogen-bonding (HB) abilities, we can examine the effects of the hydrogen bonds between formamides and [MOIm][BF4] on the intermolecular vibrations in detail.

Figure 1 shows the low-frequency spectra of $[MOIm][BF_4]$ mixtures with FA, NMF, and DMF. As increasing the molecular liquid (ML) mole fraction X_{ML} , the spectral intensity for the $[MOIm][BF_4]$ mixtures gradually increased. In neat liquids, FA has a peak at 100 cm⁻¹ and a shoulder at 200 cm⁻¹ and NMF also has a shoulder at 130 cm⁻¹. Quantum chemical calculations for clusters of FA and NMF have reported that FA and NMF have the vibrational bands of linear HB network at 100 cm⁻¹ and FA also has those of two-dimensional HB network at 200 cm^{-1.3} Thus, the peak and shoulder of FA at 100 and 200 cm⁻¹ and the shoulder of NMF

at 130 cm⁻¹ observed in this study can be attributed to the HB vibrations. The spectral shapes of the mixtures gradually changed from neat [MOIm][BF₄] to each formamide liquid with increasing $X_{\rm ML}$.

To characterize the $X_{\rm ML}$ dependence of the lowfrequency spectra, the plots of the first moment M_1 , which is the center frequency of the spectrum, vs. $X_{\rm ML}$ for the mixtures are shown in Figure 2. As increasing X_{ML} , the M_1 of the low-frequency spectra for the [MOIm][BF₄]/FA increased and that for the [MOIm][BF₄]/DMF decreased. FA has the vibrational bands of the two-dimensional HB network even at low X_{ML} , so the M_1 has shifted to the higher frequency side. DMF may invade to the polar region in [MOIm][BF₄] and make the interionic interaction weaken. On the other hand, the [MOIm][BF₄]/NMF showed almost no concentration dependence of the M_1 in $X_{ML} \leq 0.7$ but the M_1 increased in $X_{\rm ML} \ge 0.8$. This $X_{\rm ML}$ dependence is similar to those of [MOIm][BF₄] mixtures with methanol, acetonitrile, and dimethyl sulfoxide.⁴ It implies that NMF does not much influence on the ionic network of [MOIm][BF₄] in $X_{ML} \le 0.7$ but break it in $X_{ML} \ge 0.8$. References

1) H. Shirota, J. Phys. Chem. A 2012, 115, 14262.

2) H. Shirota, J. Chem. Phys. 2005, 122, 044514.

3) H. Torii and M. Tasumi, Int. J. Quant. Chem. 1998, 70, 241.

4) M. Ando, et. al., J. Phys. Chem. B 2020, 124, 7857.

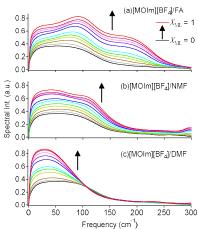
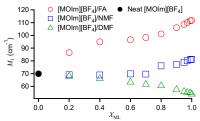
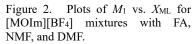




Figure 1. Low-frequency spectra of [MOIm][BF4] mixtures with (a) FA, (b) NMF, and (c) DMF.

