
Alkyl chain length dependence of conformational distribution in ionic liquids.

(¹Graduate School of Science and Engineering, Doshisha University, ²Faculty of Science and Engineering, Doshisha University) OHiroki Sumida,¹ Yoshifumi Kimura,^{1,2} Takatsugu Endo² Keywords: Ionic liquids; Melting point; Conformation; Molecular Dynamics; Nuclear magnetic resonance

Ionic liquids (ILs) are defined as salts with melting point below 100 °C. Since the melting point is the crucial physical property for ILs, numerous investigations have been made to answer why ionic liquids have such a low melting point as salts. Thermodynamically, melting point (T_m) is expressed by $T_m = \Delta_{fus} H / \Delta_{fus} S$ where $\Delta_{fus} H$ is the fusion enthalpy and $\Delta_{fus} S$ is the fusion entropy. Contrary to the conventional discussion¹), we have found that $\Delta_{fus}S$ plays a more important role than $\Delta_{fus}H$ in lowering melting point of ILs², i.e., large $\Delta_{fus}S$ of ILs drastically lowers their $T_{\rm m}$. Since most ILs have flexible alkyl chains, the conformational entropy ($S_{\rm conf}$) in the liquid state may contribute to the large $\Delta_{fus}S$ of ILs. In this research, conformations of the alkyl chain, e.g., trans, gauche, gauche', were analyzed by molecular dynamics (MD) simulations and NMR spectroscopy to estimate S_{conf} of ILs in the liquid state. 1-Alkyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][NTf2]) were used for both simulations and experiments.

First, S_{conf} of the ILs with different alkyl chain lengths in the liquid states were estimated from NPT MD trajectories (Fig. 1. (a)). The black line in the figure represents maximum S_{conf} where the population of all conformations of the alkyl chain exists equally. Estimated Sconf in the ILs (red circles) was always lower than the maximum S_{conf} and the gap was widened when the alkyl chain was lengthened. It was found that the small S_{conf} originated from the large population of the trans conformation (e.g., Fig. 1. (b)). A similar result was also obtained from J-coupling constants of NMR experiments. NMR measurement suggested that strong interactions among the alkyl chains were feasible in the trans conformation.

1) E. A. Turner, et al., J. Phys. Chem. A 2003, 107, 13, 2277. 2) T. Endo, et al., 11th Symposium on Ionic *Liquids in Japan* **2021**, 2012.

Fig. 1. (a) S_{conf} versus the carbon number of the alkyl chain in the IL cation. (b) Population of the trans conformation of N-C-C-C versus the carbon number of the alkyl chain in the IL cation.