Solid-State Photoreaction of Stilbene Dicarboxylate Salts with Alkylammonium

(¹Graduate School of Engineering, Tohoku University, ²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) ○Yunya Zhang,¹ Takashi Takeda,^{1,2} Norihisa Hoshino,^{1,2} Tomoyuki Akutagawa,^{1,2}

Keywords: Photodimerization; Crystal engineering; Solid state reaction

Photodimerization reaction of C=C double bonds in solid state has been firstly reported by Schmidt in 1971,¹ and such solid state photoreaction system has been developed by using crystal engineering technique. Herein, we focused on the simple electrostatic hydrogen-bonding interaction to control the molecular arrangement of photoreactive molecule of stilbene π -cores. A systematic change in the carbon number (n) of alkylammonium cations (C_nH_{2n+1}NH₃⁺) for dianionic 4,4'-stilbenedicarboxylate (SDC²⁻) can modulate the packing structures of SDC²⁻ in single-crystals, which realizes a suitable molecular arrangement of the formation of dimer molecule (Fig. 1).

Molecular salts between dianionic 4,4'-stilbenedicarboxylate (SDC²⁻) and two molar alkylammonium ($C_nH_{2n+1}NH_3^+$) were prepared to control the molecular arrangement of SDC²⁻ in single-crystals, which enabled to design a possible photo-reactive intermolecular interaction. In salts of ($C_nH_{2n+1}NH_3^+$)₂(SDC²⁻), change in the carbon number (n) can modulate the packing structures of the photo-reactive SDC²⁻ dianions. When the carbon–carbon distance at the central C=C bonds of two stilbene units is less than 4.2 Å,¹ the photo-dimerization reaction occurs by a UV-irradiation in solids. In this study, six single-crystals were obtained by the recrystallization of ($C_nH_{2n+1}NH_3^+$)₂(SDC²⁻) from MeOH. All proton-transferred salts had 2:1 formula. A suitable π -dimer formation was observed at only the single-crystal of ($C_3H_7NH_3^+$)₂(SDC²⁻), which central C=C bond distance was 3.64 Å. Although the intermolecular interactions between SDC²⁻ were observed in the other salts, there were insufficient condition for the photodimerization reaction. After the UV-irradiation to the powder ($C_3H_7NH_3^+$)₂(SDC²⁻), ¹H NMR spectra in CDCl₃ showed the photo-dimer formation at cyclobutane structure of $\delta = 4.58$ ppm. The photoreaction yield was reached at 89% after 30 min photo-irradiation.

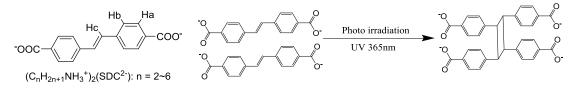


Fig. 1. Molecular structure of $(C_nH_{2n+1}NH_3^+)_2(SDC^{2-})$ salts and the formation of photo-irradiated dimer formation at the central C=C bonds.

1) Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647-678.