Evaluation of the properties of a cyclic pyrrole–imidazole polyamide, which specifically binds to CAG/CTG repeat DNA

(¹Graduate School of Science, Kyoto University, ²RIKEN Center for Biosystems Dynamics Research, ³Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University) OYuki Hirose,¹ Tomo Ohno,¹ Sefan Asamitsu,² Kaori Hashiya,¹ Toshikazu Bando,¹ Hiroshi Sugiyama^{1, 3}

Keywords: CAG repeat; CTG repeat; Triplet repeat; Pyrrole-imidazole polyamide; DNA ligand

Trinucleotide repeat sequences widely exist in the human genome. And abnormal expansion of the repeat often leads to a variety of diseases.¹ The abnormal elongation of CAG/CTG repeat sequences causes Huntington's disease, spinocerebellar ataxia, and myotonic dystrophy. In order to develop therapeutic methods for these diseases, many compounds targeting CAG/CTG repeat sequences have been developed.² Our group have been studied hairpin pyrrole–imidazole polyamides (hPIPs), which sequence specifically bind to the minor groove of CAG/CTG sequences.³

Although hPIPs have been mainly used in many studies, cyclic PIPs (cPIPs) have been developed and reported to have higher DNA-binding affinity and sequence specificity than the corresponding hPIPs.⁴ Therefore, we have developed a CAG/CTG-targeting cPIP in this study. We evaluated its DNA-binding property by using double-stranded DNA melting temperature (T_m) measurements and surface plasmon resonance (SPR) assays. Additionally, the next-generation sequencing study revealed the high sequence specificity of the cPIP.⁵ The results of each experiment will be reported in detail in the presentation.

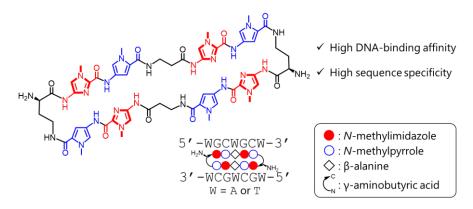


Figure. The chemical structure and ball-and-stick notation of the cPIP.

1) Mirkin, S. M. *Nature* **2007**, *447*, 932. 2) Nakamori, M. *et al. Nat. Genet.* **2020**, *52*, 146. 3) Asamitsu, S. *et al. Bioorg. Med. Chem.* **2014**, *22*, 4646. 4) Herman, D. M. *et al.* **1999**, *121*, 1121. 5) Hirose, Y. *et al. ChemBioChem in press.*