安定同位体標識を用いたラマンイメージングによる藻類細胞の貯蔵オルガネラ新生の追跡 (北大電子研¹・鶴岡高専²・東大院工³・九大院工⁴) ○与那嶺雄介¹・伊藤卓朗²・小関 泰之³・星野友⁴・三友秀之¹・居城邦治¹ Probing the Biogenesis of Storage Organelles in Algal Cells via Raman Imaging with Stable Isotope Labeling (¹Research Institute for Electronic Science, Hokkaido University, ²National Institute of Technology, Tsuruoka College, ³Graduate School of Engineering, The University of Tokyo, ⁴Faculty of Engineering, Kyushu University) ○ Yusuke Yonamine,¹ Takuro Ito², Yasuyuki Ozeki,³ Yu Hoshino,⁴ Hideyuki Mitomo,¹ Kuniharu Ijiro¹ In this presentation, the biosynthesis of polysaccharide granules (paramylons) accumulated in a unicellular photosynthetic alga, *Euglena gracilis*, was spatiotemporally probed via stimulated Raman scattering (SRS) microscopy using a stable isotope (¹³C) as the tracking probe. The carbon source of the culture medium was switched from ¹²CO₂ to ¹³CO₂ during the production of the paramylon granules; this resulted in the distribution of the ¹²C and ¹³C constituents in the granules so that the biosynthetic process could be tracked. Taking advantage of high-resolution SRS imaging and label switching, the localization of the ¹²C and ¹³C constituents inside a single paramylon granule could be visualized in three dimensions, thus revealing the growth process of paramylon granules. Keywords: Raman Imaging; Microalgae; Stable Isotope; Metabolism 微細藻類のユーグレナは、光合成を行いパラミロンと呼ばれる多糖(β -1,3 グルカン)の顆粒を貯蔵する。パラミロンは、バイオ燃料として利用できる油脂成分に変換されため、パラミロンの新生機構を解明することで、その生産性を向上できる可能性がある。ラマン分光法では化合物を安定同位体(SI)で置換すると、分子振動の変化に起因するラマンスペクトルのシフトが起こる。この現象を利用して、SI 標識した基質を細胞に代謝させ、標的生成物のスペクトル変化を追うことで、その代謝プロセスを追跡できる。本研究では $^{13}CO_2$ を代謝追跡プローブとして用い、ユーグレナ細胞の光合成による ^{13}C のパラミロンへの取り込みを誘導ラマン散乱(SRS)顕微鏡により時空間的に追跡した(Figure~1)。 ^{12}C 含有培地から ^{13}C 含有培地へ切替えてパラミロンを誘導したところ、顆粒の外縁に ^{13}C 成分が局在していた。さらに 3 次元 SRS 画像 を断面解析した結果、中心が ¹²C で外殻が ¹³C のコアシェル 構造が確認された。これらの 結果からパラミロン顆粒は新生した成分が表面に蓄積して 成長するモデルが示された。 ## 【参考文献】 Y. Yonamine et al., *Anal. Chem.*, **93**, 16796-16803 (2021). Figure 1. The biogenesis of paramylon granules in an algal cell was investigated via SRS microscopy employing ¹³CO₂ and ¹²CO₂ substrates that were exposed to different conditions and subsequent segmentation analysis of each granule.