α-グリコシド型糖鎖ポリマーの合成研究 (II): GlcNAc 含有ポリマーの合成と機能評価

(埼大院理工¹・埼大先端ラボ²) ○中田 樹一¹・松下 隆彦^{1,2}・小山 哲夫¹・幡野 健^{1,2}・松岡浩司^{1,2}

Synthetic study of α-glycosidic sugar chain polymer (II): Synthesis and functional evaluation of GlcNAc-containing polymer (¹*Graduate School of Science & Engineering, Saitama University*, ²*Advanced Institute of Innovative Technology (AIIT), Saitama University*) OJuichi Nakada, ¹ Takahiko Matsusita, ^{1,2} Tetsuo Koyama, ¹ Koji Matsuoka, ^{1,2}

In order to clarify the difference in binding affinity between glycoside anomers, we systematically synthesized glycopolymers having an α -glycoside-type GlcNAc moieties that have not been implemented so far. Glycomonomers with an α -form on glycosidic linkage were prepared in 3 steps. The water-soluble glycomonomers were polymerized with acrylamide to afford the corresponding glycopolymers with α -glycoside-type GlcNAc. The biological evaluation of the glycopolymers against WGA was done by the fluorometric assay and the comparison of the affinities for a series of glycopolymers with β -glycoside-type GlcNAc was investigated.

Keywords: GlcNAc; Glycopolymers; Anomers; Radical polymerization; Lectins

グリコシドのアノマーによる結合親和性の相違を明らかにするために、これまで実施されていない α-グリコシド型 GlcNAc ポリマーの系統的合成を行った。

まず、3 ステップで α 体の水溶性のモノマーを合成し、 α 体のみの単離精製を達成した。その糖モノマーとアクリルアミドを水中においてラジカル重合することにより、 α -グリコシド型 GleNAc を含むポリマーを合成した。小麦胚芽レクチン(WGA)に対するこのポリマーの結合親和性を評価し、既知の β -グリコシド型 GleNAc を含むポリマーと比較を行った。