Guest Encapsulation Behavior of Covered Fluorine-modified Hollow-type Metal Oxide Cluster {Mo₁₃₂}

(¹*Grad. Sch. Env. Sci., Hokkaido Univ.,* ²*Fac. Env. Earth Sci., Hokkaido Univ.*) ○Chinatsu Murata¹, Yukatsu Shichibu¹,², Katsuaki Konishi¹,² **Keywords**: Polyoxometalate; Fluorine modified

Hollow-type metal oxide cluster $\{Mo_{132}O_{372}(H_2O)_{72}(L)_{30}\}^{n-}$ (L = AcO-, SO₄²⁻ , *etc.*; denoted by $\{Mo_{132}\text{-}L\}$) has a porous spherical structure ^[1]. It has a molybdenum-oxide based framework, and ligands (L) are coordinated to the inside. In addition, guest molecules can be encapsulated through pores on the surface ^[2]. However, modification of the inner environment, leading to the tuning of selectivity for guest molecules, had not been established. In this work, we examined the structure and inclusion behavior of a trifluoroacetate (TFA) modified cluster $\{Mo_{132}\text{-}TFA\}$, and the behavior was compared to that of $\{Mo_{132}\text{-}OAc\}$.

 $\{Mo_{132}\text{-}TFA\}$ was obtained via ligand exchange reaction of $\{Mo_{132}\text{-}OAc\}$ with TFA in water. Single crystal X-ray diffraction revealed that it had a spherical structure in which CF₃

groups were introduced on the inner surface. Retention of the spherical framework after the reaction confirmed by NMR, FT-IR and UV-Vis spectra. The inner environment of {Mo₁₃₂-**TFA**} was then investigated from the encapsulation behavior of cyclic organic Encapsulations of these molecules. molecules into two types of {Mo₁₃₂} hosts were shown by NMR analyses, and the number of included guest molecules were determined from quantitative NMR. As for five-membered rings, each of them was basically more efficiently encapsulated into $\{Mo_{132}\text{-}TFA\}$ than $\{Mo_{132}\text{-}OAc\}$ (Fig. 1).

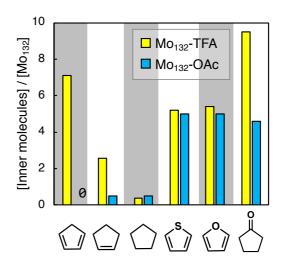


Fig. 1 Inclusion ability of {Mo₁₃₂} for five-membered rings.

- [1] A. Müller et al., Chem. Soc. Rev. 2012, 41, 7431.
- [2] R. Neumann et al., Chem. Eur. J. 2016, 22, 15231.