
The syntheses and Structures of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands

(Graduate School of Engineering, Aichi Institute of Technology) OYoshiaki Kokubo, Yuji Kajita, and Hideki Masuda

Keywords: Chromium Complex; Dinitrogen Complex; Dinitrogen Activation; Dinuclear Complex; Triamidoamine Ligand

Transition metal dinitrogen complexes are intensively studied for N_2 reduction. Catalytic reduction of N_2 to NH_3 was achieved by Schrock with a molybdenum dinitrogen complex supported with a triamidoamine ligand.¹ Nishibayashi group also reported a catalytic reduction of N_2 by using Mo complex and water as a proton source recently.² In contrast to the many variations of Mo and W complexes with dinitrogen, examples of chromium complex are rare.

In this study, we synthesized triamidoamine ligand with benzyl (L^{3-} = tris(2amidoethyl)amine, R = Bn) and prepared a novel chromium complex by reacting CrCl₃ with L^R under N₂. The structure of chromium complex revealed a dichromium complex with a bridging N₂ ligand, $[{Cr(L^R)}_2(N_2)](1)$ (Scheme 1), which is composed of two species, 1a and **1b**, in a unit cell. The N—N bonds in **1a** and **1b** are 1.188(4) and 1.185(7) Å, respectively. The N—N stretching vibration ($v(^{14}N-^{14}N)$) of 1 was observed at 1772 cm⁻¹. Complex 1 reacted with Na or K to give a dinitrogen-chromium(II) complex with an alkaline ion, $[{CrNa(L^{Bn})(N_2)(Et_2O)}_2]$ (2) or $[{CrK(L^{Bn})(N_2)}_4(Et_2O)_2]$ (3), respectively, and complexes 2 and 3 reacted with 15-crown-5 and 18-crwon-6 to form their crown-ether adducts, $[CrNa(L^{Bn}(N_2)(15\text{-}crown-5)]$ (4) and $[CrK(L^{Bn})(N_2(18\text{-}crown-6)]$ (5), respectively (Scheme 1). Their structures were confirmed by X-ray analysis. The IR spectra gave the $v({}^{14}N{-}^{14}N)$ at 1813 cm⁻¹ for 2, at 1804 and 1774 cm⁻¹ for 3, at 1813 cm⁻¹ for 4, and at 1807 cm⁻¹ for 5, respectively. Additionally, all of complexes, 1, 2, 3, 4, and 5, reacted with a reductant and a proton source to give NH₃ and/or N₂H₄, and 1 gave only N₂H₄ when using HCl. In this presentation, we will report crystal structures, characterization, and reactivities of these dichromium-dinitrogen complexes.

Scheme 1

1) R. R. Schrock et al., Science 2003, 301, 76. 2) Y. Nishibayashi et al., Nature, 2019, 568, 536.