Mechanism analysis and efficiency improvement of ammonia formation reaction from iron nitride and carbonated water

(¹Graduate School of Integrative Science and Engineering, Tokyo City University, ²Faculty of Science and Engineering, Tokyo City University) ○Hiromi Eba1,¹ Tian Liu,¹ Keiichi Fukami²

Keywords: Ammonia Synthesis; Iron Nitride; Carbon Dioxide; Hydrogen Energy; Reaction Mechanism

Ammonia (NH₃) is an important raw material for nitrogen fertilizers used in agriculture, and it has been identified as a potential hydrogen carrier in recent years. However, NH₃ is mainly synthesized by the Haber–Bosch process, which requires high temperature and pressure. To lower the environmental burden, it is necessary to achieve NH₃ synthesis under milder conditions. In this study, we investigated the generation of NH₃ from iron nitride and carbonated water at ambient temperature and pressure.¹

Fe₄N powder and a small amount of carbonated water were sealed in a bottle together with 101.3 kPa CO₂. The bottle was stirred at a constant temperature in the range of 298 to 328 K. The gas-phase H₂ and CO₂ and the liquid-phase NH₃ were quantified by gas chromatography every 30 min. After the reaction, the contents of the bottle were dried, and qualitative and quantitative analyses were performed by X-ray diffraction (XRD). In addition, Na₂CO₃ aqueous solution was prepared and used in place of carbonated water, and the same measurements were repeated.

For both NH₃ and H₂, the production rates and final production amounts increased as the reaction temperature increased. At 298 K, the amount of NH₃ 300 min after the start of the reaction was almost twice that of H₂. In the reaction, 1 mol of NH₃ is produced from 1 mol of Fe₄N, and 4 mol of Fe can provide 8 electrons. Hence, it was expected that 5 mol of H would be produced in addition to 1 mol of NH₃, i.e., 2.5 mol of H₂ can be produced. It is presumed that the amount of NH₃ produced is higher than that of H₂ because N escaped from the lattice of Fe₄N, which is an interstitial compound, and reacted preferentially with H on the Fe₄N surface.

The activation energy ΔE_a calculated by using the Arrhenius plot of the reaction rate constants obtained at each temperature was 28 and 50 kJ/mol for the formation of NH₃ and H₂, respectively. The smaller ΔE_a also indicated that NH₃ production is more advantageous. The addition of Na₂CO₃ increased the rate of NH₃ formation as well as the amount of NH₃. The addition of carbonate increased both the pH and HCO₃⁻concentration, which improved the rate of the redox reaction involving HCO₃⁻ and the formation of the Fe carbonato complex.

This work was supported by JKA and its promotion funds from KEIRIN RACE.

1) H. Eba, Y. Masuzoe, T. Sugihara, H. Yagi, T. Liu, *International Journal of Hydrogen Energy*, **2021**, 46, 10642-10652, https://doi.org/10.1016/j.ijhydene.2020.12.194.