pH-Insensitive Brønsted Acid-Base Site Embedded in a Pentanuclear Scaffold

(¹Graduate School of Engineering, Osaka University, ²Institute for Molecular Science, ³SOKENDAI, ⁴JST PRESTO) OMisa Tomoda,^{1,2,3} Hitoshi Izu,^{1,2} Yutaka Saga,¹ Mio Kondo,^{1,4} Shigeyuki Masaoka¹

Keywords: Heterometallic Multinuclear Complex; Acid-Base Response; Hydrogen Evolution Reaction; Changes in Catalytic Activity

Hydrogen ion (H⁺) is a cation which consists of a single proton and exhibits the highest positive charge density. The behaviors of H⁺ play an essential role as the origin of functions in both biological systems and artificial functional materials. In general, the behaviors of H⁺ can be interpreted by the conventional Brønsted-Lowry acid-base theory. According to the theory, the behavior of H⁺ is quite sensitive to the concentration of H⁺ (*i.e.*, pH), and it is quite difficult to maintain the properties/function of compounds bearing Brønsted acid/base sites throughout a wide range of pH. Here, we successfully developed an unconventional Brønsted acid/base site, which exhibits pH-insensitive nature.

Our study started with the investigation on acid-base responding behaviors of heterometallic pentanuclear complexes, Ru₂Co₃OH and Ru₂Co₃O (Figure 1). Upon addition of 3 eq. of a strong base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, $pK_a = 24.3$) to an acetonitrile solution containing Ru₂Co₃OH, no UV-vis absorption spectral change was observed, indicating that no deprotonation reaction proceed. Additionally, the protonation reaction of Ru₂Co₃O was conducted by using the conjugated acid of DBU, DBU-H⁺. In this case, protonation reaction also did not proceed. These unusual acid-base responding behaviors of the complexes indicated that Brønsted acid-base sites at the triangular core are in the unique environment.

Subsequently, we investigated redox behaviors of Ru_2Co_3OH and Ru_2Co_3O (Figure 2), and it was revealed that the confined H⁺ largely affects their redox behaviors. We also found that Ru_2Co_3O .

Figure 1. The molecular structures of heterometallic pentanuclear complexes, **Ru₂Co₃OH** (left) and **Ru₂Co₃O** (right).

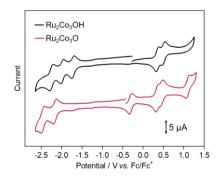


Figure 2. CVs of Ru_2Co_3OH and Ru_2Co_3O .

the catalytic activity for hydrogen evolution reaction can be controlled by the presence/absence of H^+ at the sites. Current study offers a new class of compounds, which can maintain the properties/function as a Brønsted acid/base in a wide range of pH.