Spin crossover and second harmonic generation of cyanido-bridged metal assemblies

(¹*The University of Tokyo*, ²*Leibniz University Hannover*) ⊙Koji Nakabayashi,¹ Shintaro Kawabata,¹ Takefumi Kanno,¹ Kenta Imoto,¹ Stephen Klimke,¹ Franz Renz,² Shin-ichi Ohkoshi¹

Keywords: Magnetic complexes, Spin crossover, Second harmonic generation

Cyanido-bridged metal assemblies are attractive magnetic compounds for which magnetic properties and functionalities can be designed by elaborate selection of building blocks.¹ In the cyanido-bridged assemblies, spin crossover is a fundamental magnetic property as well as long-range magnetic ordering. Various functional spin crossover systems have been reported since spin crossover was observed at a Prussian blue analogue.² Herein, we present spin crossover compounds based on cyanido-bridged Fe-Nb assemblies and their optical properties like second harmonic generation. The chiral and achiral Fe-Nb complexes, Fe^{II}₂[Nb^{IV}(CN)₈](L)₈·6H₂O (L = *R*-1-(3-pyridyl)ethanol: *R*-FeNb; *S*-1-(3-pyridyl)ethanol: *S*-FeNb; *rac*-1-(3-pyridyl)ethanol: *rac*-FeNb), were synthesized.³ All complexes have an identical 3D cyanido-bridged coordination network in which the Fe^{II} site are coordinated to two cyanides and four pyridylethanol molecules (Figure 1a), and show a gradual incomplete spin crossover. For the chiral compounds of *R*-FeNb and *S*-FeNb, second harmonic generation was observed, and the intensity of the second harmonic (SH) light was modulated by the spin crossover (Figure 1b).

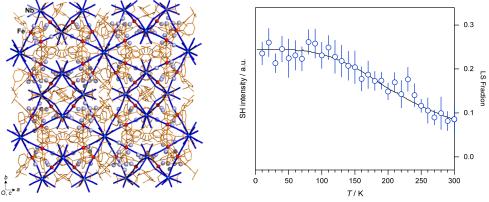


Figure 1. (a) Crystal structure of R-FeNb, (b) Temperature dependency of the SH light intensity (blue circles) for R-FeNb with the fraction change of the low spin (LS) state estimated from the magnetic susceptibilities.

M. Reczyński, D. Pinkowicz, K. Nakabayashi, C. Näther, J. Stanek, M. Kozieł, J. Kalinowska-Tłuścik, B. Sieklucka, S. Ohkoshi, B. Nowicka, *Angew. Chem. Int. Ed.*, **2021**, *60*, 2330. 2)
W. Kosaka, K. Nomura, K. Hashimoto, S. Ohkoshi, *J. Am. Chem. Soc.* **2005**, *127*, 8590. 3)
S. Kawabata, K. Nakabayashi, K. Imoto, S. Klimke, F. Renz, S. Ohkoshi, *Dalton Trans.*, **2021**, *50*, 8524.