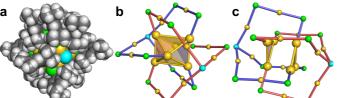
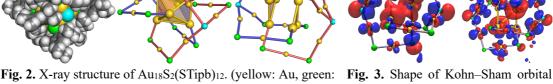
Synthesis and Structural Analysis of a Gold Cluster Au₁₈S₂(SR)₁₂ $(R = 2.4.6 - C_6H_2/Pr_3CH_2)$ Protected by Bulky Thiolate Ligands

(¹Graduate School of Science, The University of Tokyo, ²ESICB, Kyoto University) OTaro Shigeta, Shinjiro Takano, Tatsuya Tsukuda^{1,2}

Keywords: Ligand-Protected Gold Cluster; Superatom; Interlocked Cage Structure; Single-Crystal X-Ray Diffraction; Density Functional Theory Calculation


The structure of the organic ligands and their binding interactions with the gold clusters have a significant impact on the geometric structure and physicochemical properties of the gold clusters.¹⁾ For example, associative interaction between the adjacent ligands enhances the photoluminescence quantum yields by rigidification of the Au cores, 2) whereas repulsive interaction between the adjacent ligands results in direct coordination of thiolates to the Au core^{3,4)} and formation of S²⁻ ligands on the Au core.⁵⁾ In this study, a new gold cluster, Au₁₈S₂(STipb)₁₂, was obtained using a bulky thiol, interaction between the adjacent ligands 2,4,6-triisopropylbenzyl mercaptan (TipbSH, Fig. 1).


Au₁₈S₂(STipb)₁₂ was isolated via the following steps: (i) reduction of AuClS(CH₃)₂ with NaBH₄ in the presence of TipbSH; (ii) incubation at 80°C in the presence of an excess amount of TipbSH; (iii) purification by gel permeation chromatography; (iv) fractional precipitation. Single-crystal X-ray diffraction analysis revealed that Au₁₈S₂(STipb)₁₂ has a deformed octahedral Au₆ core clutched by two tridentate S[Au₂(STipb)₂]₃ units in an interlocked manner (Fig. 2). The electronic structures of Au₁₈S₂(STipb)₁₂ and a simplified model Au₁₈S₂(SCH₃)₁₂ were investigated by density functional theory calculations.

Comparison of the HOMO-1 in Fig. 3 indicates that the electron density in the region between the two Au₃ units in Au₁₈S₂(STipb)₁₂ is much smaller than that in Au₁₈S₂(SCH₃)₁₂. Therefore, we propose that the Au₆ core is better viewed as a face-to-face dimer of Au₃ superatoms rather than a Au₆ superatom and that the interaction between the two Au₃ superatoms is weakened by the steric repulsion owing to the bulky TipbS ligands.

Fig. 1. Structure of TipbSH

S of STipb, cyan: S, gray: C, white: H) of HOMO-1 of (a) Au₁₈S₂(SCH₃)₁₂ and (b) $Au_{18}S_2(STipb)_{12}$.

1) S. Takano et al., J. Am. Chem. Soc. 2021, 143, 1683. 2) K. Pyo et al., J. Am. Chem. Soc. 2015, 137, 8244. 3) J. Nishigaki et al., J. Am. Chem. Soc. 2012, 134, 14295. 4) J. Nishigaki et al., Chem. Commun. 2014, 50, 839. 5) R. Jin et al., Chem. Rev. 2016, 116, 10346.