2 核 Cu 錯体の架橋ハロゲン元素の違いがもたらす CO_2 還元における C_2 化合物生成効率の変化

(豊田中研) ○坂本 直柔・関澤 佳太・佐藤 俊介・大橋 雅卓・野中 敬正・西村 友作・北住 幸介・森川 健志・荒井 健男

Control of C₂ products in CO₂ reduction by different halogen bridging element for Cu(I) dinuclear complexs. (*Toyota Central R&D Labs., Inc.,*) ONaonari Sakamoto, Keita Sekizawa, Shunsuke Sato, Masataka Ohashi, Takamasa Nonaka, Yusaku F. Nishimura, Kosuke Kitazumi, Takeshi Morikawa, Takeo Arai

The C–C coupling reaction to CO_2 into C_2 products using the previous copper complexes was suggested to be caused by the Cu metal formed via the electrochemical dissociation of the complex. We have previously reported the selective formation of C_2 products in CO_2 electroreduction using Cu(I) dinuclear coordination polymers while maintaining the metal complex structure⁽¹⁾. The distance between the active sites is presumed to be important for the C-C coupling reaction. In this paper, the Cu(I) dinuclear complexes were synthesized as $Cu_2(\mu - X)_2(Triphenylphosphine)_2(4,4'-bipyridine)_2$ (CuX-BPY: X = CI, Br, I) by changing the bridging halogen elements, due to control the Cu-Cu distance. The efficiency of C_2 products formation in the CO_2 reduction reaction (CO_2RR) was about 20% for X=Cl, while it was about 2% for X=I. It was thought that the difference in Cu-Cu distance alone was insufficient to explain the significant selectivity difference. Assuming that the state of coordination unsaturation in the CO_2RR is the desorption of the bridging halogen element on the top surface, the substitution reaction with different halogen elements was investigated. The bridging Cl element was more easily desorbed than the bridging I.

Keywords: CO₂ reduction, Metal complex, Coordination polymer, C₂ products, Cu-Cu distance

金属錯体触媒により CO_2 から C-C カップリング反応が必要な C_2 化合物を生成する報告はいずれも錯体構造が崩壊し金属 Cu に変化したものに起因していた。我々は Cu(I)2 核配位高分子を用いた CO_2 電解還元において金属錯体構造を維持しつつ C_2 化合物を選択的に生成できることを報告している(1)。 Cu(I)2 核錯体は架橋ハロゲン元素を変えることで Cu-Cu 間距離を制御することができ、それに伴い C-C カップリング反応効率を変化させられると考え、 $Cu_2(\mu - X)_2$ (Triphenylphosphine) $_2$ (4,4'-bipyridine) $_2$ (CuX-BPY: X=CI, Br, I)をそれぞれ合成した(2)。 Cu-Cu 間距離は X=CI で 2.95 Å, X=I で 3.09 Å と想定通り変化することを単結晶 X 線結晶構造解析により確認した。 CO_2 電解還元反応において、 C_2 化合物生成効率が X=CI では 20%程度だったのに対して、X=I では 2%程度で大きく選択性が異なった。 CO_2 還元反応において配位不飽和の状態は最表面の架橋ハロゲン元素が脱離した状態と仮定し、異種ハロゲン元素との置換反応を検討したところ、架橋 CI は架橋 I よりも脱離しやすいことが示唆された。本研究は、 CO_2 還元反応で C_2 化合物を生成する金属錯体触媒の設計に新たな指針を与えるものである。

1) N. Sakamoto et al., ACS Catal. 2020, 10, 10412–10419. 2) N. Sakamoto et al., J. Catal. 2021, 404,12-17.