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Selective syntheses of multiple structural isomers are of importance to expand a chemical
space. We have developed a new in situ transmetalation,' which enables selective trapping of
unexplored N-heteroaryllithiums in halogen dance?® to synthesize multiple structural isomers.

We achieved a method to use unexplored N-heteroaryllithiums by trapping transient
azolyllithiums or facilitating halogen dance of pyridyllithiums. We focused on deprotolithiation
of 2,5-dibromothiazole (1) with LDA which provided complex mixture at 0 °C. These results
indicated that the possible organolithiums 2 and 3 were transient species. After screening of
zinc halide diamine complexes to trap these organolithiums, ZnCl,- TMEDA proved effective
for the selective trapping of the first generated organolithium 2, providing thiazole 4 in 89%
yield after iodination. The use of ZnCl,"TMPDA gave thiazole 5 in 72% yield, exclusively. The
contrasting result was realized by a slower transmetalation of ZnCl,*TMPDA. In contrast,
halogen dance of lithiated pyridine 6 was sluggish, and subsequent iodination provided
iodopyridines 7 and 8 in 53% and 12% yields, respectively. After optimization, a catalytic
amount (0.10 equiv) of BF;-OEt; drastically promoted halogen dance to afford pyridine 8 in
71% yield, whereas B(CsFs)s was less effective. We will discuss mechanistic insight into each

reaction and the difference between bromoazoles and bromopyridines in halogen dance.
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