
Synthesis of Tetraaryl-Substituted 5,15-Dioxaporphyrin and its Oxidation to the Aromatic Dication

(¹Graduate School of Engineering, Kyushu University, ²Advanced Research Support Center (ADRES), Ehime University) ○ Jiping Hao,¹ Shigeki Mori,² Hiroyuki Furuta,¹ Soji Shimizu¹

Keywords: 5,15-Dioxaporphyrin; Antiaromatic; Aromatic Dication; Redox Chemistry

Heteroatom-containing porphyrin analogs have been attracting attention because antiaromatic conjugated systems can be generated as stable forms. Among such heteroatom-containing porphyrin analogs, we have synthesized 5,15-dioxaporphyrin (DOP) for the first time by a nucleophilic aromatic substitution reaction of a nickel bis(α, α '-dibromodipyrrin) complex with benzaldoxime, followed by an intramolecular annulation of the α -hydroxy-substituted intermediate.¹ In our previous work, a redox reaction of DOP to transform the 20 π -antiaromatic neutral state to the 18 π -aromatic dication was investigated. However, due to the reactivity at the β -pyrrolic positions of the radical cation, a β,β -linked dimeric product was obtained. In this work, to prevent the dimerization reaction upon oxidation and investigate redox behaviors of DOP, tetraaryl-substituted DOP (DOP-Ar₄) was synthesized by bromination of DOP and Suzuki-Miyaura coupling reactions.

The neutral DOP-Ar₄ was oxidized with two molar equivalents of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Magic blue) in CH₂Cl₂ at room temperature for one hour to provide a dication species. The aromatic nature of the dication species was confirmed by the down-field shifts of the β -pyrrolic protons. We also obtained the 19 π radical cation species during the oxidation process. Therefore, the neutral DOP-Ar₄ can be oxidized stepwise from a 20π antiaromatic state to a 19π radial cation and further to an 18π aromatic dication. Structures of all these states were characterized by single crystal X-ray diffraction analysis. In this presentation, the synthesis of DOP-Ar4 and its redox behaviors will be reported.

Scheme 1. Redox reactions of DOP-Ar₄

1) A. Nishiyama, M. Fukuda, S. Mori, K. Furukawa, H. Fliegl, H. Furuta, S. Shimizu, *Angew. Chem. Int. Ed.* 2018, *57*, 9728.