
Synthesis, Properties, and π-Extension of B₄N₄-Heteropentalene Derivatives

(¹Lab. Chem. Life Sci., Tokyo Tech., ²Sch. Mater. and Chem. Tech., Tokyo Tech.) \bigcirc Junki Kashida^{1,2}, Yoshiaki Shoji^{1,2}, Takanori Fukushima^{1,2} **Keywords**: BN-Containing π -Conjugated Molecule; Element Substitution; Pentalene; Phosphorescence; Host Material

The replacement of C–C bonds of π -conjugated molecules with isoelectronic but polar B–N bonds can endow π -conjugated molecules with new electronic and optoelectronic properties. We recently showed that a 1,3,2,4-diazadiboretidine derivative, featuring a cyclic B₂N₂ four-membered ring with an isoelectronic structure of cyclobutadiene, displays blue phosphorescence in solution at room temperature.^[1] Here we report the synthesis and properties of a B₄N₄-heteropentalene derivative (1).^[2] Due to the steric protection by six mesityl groups, 1 showed remarkable stability toward air and even water. Single-crystal X-ray analysis of 1 revealed bonding characters of the B₄N₄-heteropentalene moiety. Compound 1 emits short-wavelength blue phosphorescence in a glassy matrix at 77 K, indicating that 1 has a high triplet energy. Motivated by this finding, we fabricated an OLED device using 1 and Ir(ppy)₃ as a host material and green phosphorescence emitter, respectively, where a relatively high external quantum efficiency (~15%) was achieved. In this presentation, we also report the synthesis and properties of a new π -extended B₄N₄-heteropentalene (2).

- [1] Y. Shoji, Y. Ikabata, I. Ryzhii, R. Ayub, O. El Bakouri, T. Sato, Q. Wang, T. Miura, B. S. B. Karunathilaka, Y. Tsuchiya, C. Adachi, H. Ottosson, H. Nakai, T. Ikoma, T. Fukushima, *Angew. Chem. Int. Ed.*, **2021**, *60*, 21817–21823.
- [2] J. Kashida, Y. Shoji, Y. Ikabata, H. Taka, H. Sakai, T. Hasobe, H. Nakai, T. Fukushima, Angew. Chem. Int. Ed., 2021, 60, 23812–23818.