
Asymmetric Preparation of β -Amino- α -ketoacids by the Highly Stereoselective Mannich-type Addition for the Peptide Synthesis

(*Graduate School of Pharmaceutical Sciences, Kyoto University*) \bigcirc Yusuke Tokuhiro, Kosuke Yoshikawa, Sei Murayama, Takeshi Nanjo, Yoshiji Takemoto **Keywords**: β -Amino- α -ketoacid; Mannich Reaction; Organocatalysis; Asymmetric Synthesis; Peptide

 β -Amino- α -ketoacids are important unnatural amino acids featured by an unique bioactivity and reactivity derived from a highly electrophilic carbonyl group at α -position. Despite of the broad utility of the motif, a reliable synthetic method of β -amino- α -ketoacids has been limited to oxidative homologation of α -amino acids based on chiral pool approach.¹ In addition, elongation of peptide chains for the synthesis of bioactive compounds requires an appropriate protection or late-stage installation of α -carbonyl group to avoid undesired reactivity.

In order to establish a novel approach providing a wide variety of β -amino- α -ketoacids and their peptide derivatives, we envisaged that asymmetric Mannich-type addition of glyoxylate cyanohydrin to imines would afford the equivalent of β -amino- α -ketoacids. As a result of catalyst screening, we found that sterically-tuned aminothiourea catalyst provided the desired adducts bearing variable residue including non-proteinogenic one with excellent enantio- and diastereoselectivity.^{2,3} The asymmetric adducts are readily converted to β -amino- α -ketoacids by simple two-step operations. We also achieved the divergent transformation from the Mannich adducts to peptide- α -ketoacids and peptide- α -ketoamides by utilizing the cyanohydrin motif at α -position as an easily removable protecting group, and demonstrated the synthetic utility in decarboxylative peptide fragment coupling and preparation of α -ketoamide-containing pharmaceutical.

1) Ju, L.; Lippert, A. R.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 4253.

- 2) Nanjo, T.; Zhang, X.; Tokuhiro, Y.; Takemoto, Y. ACS Catal. 2019, 9, 10087.
- 3) Tokuhiro, Y.; Yoshikawa, K.; Murayama, S.; Nanjo, T.; Takemoto, Y. Manuscript in preparation.