

Selective substitution reaction of hexachlorocyclotriphosphazene (HCCP) with phenoxide

(*Graduate School of Natural Science and Technology, Okayama University*) ORyota Takahashi, Manabu Kuroboshi, Hideo Tanaka

Keywords: Hexachlorocyclotriphosphazene; Nucleophilic substitution; Counter cation; Phenoxide

Hexachlorocyclotriphosphazene (N₃P₃Cl₆, HCCP, **1**) has a six-membered ring (N₃P₃) and six Cl atoms on the P atoms. These P-Cl bonds are active for nucleophilic substitution, and several nucleophiles are easily introduced. Usually, six same nucleophiles have been introduced to give N₃P₃Nu¹₆. If partial nucleophilic substitution can be performed selectively, more than two kinds of nucleophiles can be introduced to give multi-functionalized materials (N₃P₃Nu¹_xNu²_(6-x), etc). When HCCP was allowed to react with ArONa in THF, though partial nucleophilic substitution occurred, product selectivity was not high enough; a complex mixture of mono- (**2**), di-, tri-, tetra-, penta-, and hexasubstituted products was obtained.¹ On the other hand, we found ArOLi/THF gave only mono-substituted product **2** even when an excess amount of ArOLi was used.

Phenol (10 equiv.)	Product Ratio ^a (%)	
	1	2
p-methyl	34	66
p-chloro	13	87
p-fluoro	16	84
<i>p</i> -methoxy	9	91

^a Determined by ³¹P NMR of the reaction mixture.

HCCP was allowed to react with *p*-methoxyphenol/*n*-BuLi (1/1 equiv.) in THF at -40 °C for 3 h to give **2a** (Ar = MeOC₆H₄) in 60% yield. When 6 equiv. of *p*-methoxyphenol/*n*-BuLi was used, **2a** was obtained in almost 100% yield, and no multi-substituted products were detected (Figure 1). Other phenols such as *p*-methyl, *p*-chloro, and *p*-fluoro phenols gave similar monophenoxylated triphosphazene in 66, 87, 84%, respectively (Table 1).

1) Y. W. Chen-Yang.; S. J. Chen.; B.D. Tsai. Ind. Eng. Chem. Res. 1991, 30, 1314-1319.