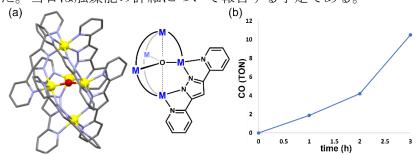
合金型五核金属錯体の合成と CO2 還元反応

(阪大院工¹・JST さきがけ²) ○森井 佑真¹・赤井 拓哉¹・嵯峨 裕¹・近藤 美欧 ^{1,2}・ 正岡 重行¹


Development of Alloyed Pentanuclear Metal Complexes for CO₂ Reduction (¹*Graduate School of Engineering, Osaka University*, ²*JST PRESTO*) OYuma Morii¹, Takuya Akai¹, Yutaka Saga¹, Mio Kondo^{1,2}, Shigeyuki Masaoka¹

Reduction of CO₂ into energy rich compounds has attracted considerable attention as a solution to global warming and energy shortage problem. We previously disclosed that a pentanuclear cobalt complex, which composed of six 3,5-bis(2-pyridyl)pyrazole (Hbpp) ligands and five cobalt ions, can serve as a catalyst for CO₂ reduction. It is noteworthy that several natural metal enzymes for small molecule transformations contain hetero-polynuclear complexes as catalytic centers. Based on the aforementioned background, in this work, we aimed to construct novel alloyed pentanuclear complexes for CO₂ reduction. Alloyed pentanuclear complexes containing Fe and Co ions were newly synthesized by reacting two kinds of metal ions simultaneously. Furthermore, electrochemical and photochemical CO₂ reduction ability of the obtained complexes was investigated in detail.

Keywords: Multinuclear Metal Complex; CO₂ Reduction

 CO_2 還元反応は地球温暖化やエネルギー問題の解決策として近年注目を浴びている。当研究室では、最近この CO_2 還元反応を促進する触媒として、3,5-bis(2-pyridyl)pyrazole (Hbpp)とコバルトイオンからなるコバルト五核錯体を報告している 1)。一方、生体中で効率的な小分子変換を触媒する天然の金属酵素には、異種金属多核錯体を活性中心として有するものが存在する。そこで本研究では、金属五核錯体中に二種類の金属を合金化し、高活性な CO_2 還元触媒を開発することを目的とした。

合金型五核錯体の合成は、二種の金属イオン(Co, Fe)を同じ容器内で同時に配位子である Hbpp と反応させることにより行った。コバルトイオンと鉄イオンの混合比は 4:1,3:2,1:1,2:3,1:4 の 5 種類で合成し、得られた錯体について単結晶 X 線構造解析を行い、五核錯体構造が生成したことを確認した。更に、得られた錯体について電気化学的、光化学的条件下における CO_2 還元触媒能を調査したところ、一酸化炭素とギ酸が得られ、合成した合金型五核錯体は両条件下での CO_2 還元の触媒作用を示すことが確認された。当日は触媒能の詳細について報告する予定である。

Figure. (a) Structure of alloyed pentanuclear complexes (M = Co or Fe)

(b) Photochemical CO₂ reduction

1) T. Akai et al., Dalton Trans. 2020, 49, 1384-1387.