Al_nCo⁻(n=10-13)クラスター表面におけるアンモニアの吸着と脱水素反応に関する理論研究

(千葉工大工) ○宮内 一成・松澤 秀則

Theoretical study on the adsorption and dehydrogenation reaction of ammonia on the surface of Al_nCo⁻ (n=10-13) clusters (*Faculty of Engineering, Chiba Institute of Technology*) OKazunari Miyauchi, Hidenori Matsuzawa

In recent years, the NH_3 dehydrogenation reaction on the surface of metal clusters has attracted attention. In this study, a Co atom was added to the Al_n^- cluster for the improvement of the reactivity of NH_3 dehydrogenation. The NH_3 adsorption energies (E_{ads}) and NH_3 dehydrogenation reaction pathways on the surfaces of Al_n^- and Al_nCo^- (n=10-13) clusters, were obtained using the DFT calculations. In the reaction pathway on Al_{10}^- , the H_2 elimination does not occur. On the other hand, the reaction pathway on $Al_{10}Co^-$ is lying lower than that of Al_{10}^- on the potential energy surface, and it is suggested that the H_2 elimination occurs.

Keywords: Al-Co cluster; ammonia; adsorption energy; dehydrogenation reaction; density functional theory

全体に反応系より高いエネルギー状態で反応系より高い、 H_2 は脱離しない。一方、Coを含む[b]では TS1を除いて反応系より低が至反応系より低がで反応系より低がでし、他のクラスが進行し、他のクラスが進行し、であるであるがある。と反応が容易になると反応が容易になると対し、Ecoがなると考えられる。

1) Andrej Grubisic, et al., J. Chem. Phys. **2009**, 131, 18405

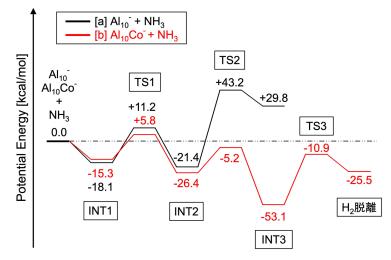


図 1 Al₁₀-及び Al₁₀Co⁻上での NH₃ 脱水素反応経路