キラリティとヘリカルな配位様式を有するユウロピウム錯体の膜 化による円偏光発光増強

(¹ 青山学院大理工・² 富山大院理工) 〇髙垣亮佑 ¹・岩下竜也 ²・大曲仁美 ¹・岩村宗高 ²・野崎浩一 ²・長谷川美貴 ¹

Strong enhancement of circularly polarized luminescence of Eu complexes with chirality and helicity by the film formation. (\(^1\)Graduate School of Science and Engineering, Aoyama Gakuin University\(^1\) Graduate School of Science and Engineering, Toyama University\(^1\)

O Ryosuke Takagaki, ¹ Tatsuya Iwasita, ² Hitomi Ohmagari, ¹ Munetaka Iwamura, Koichi Nozaki, ² and Miki Hasegawa ¹

This study aimed to enhance circularly polarized luminescence (CPL) of Eu complexes with chirality and helical properties by the film formation. The S- and R-EuL^{dph} were deposited on the surface modified quartz substrate ^[1] by wet deposition method (Fig. 1). The behavior of Eu 3d XPS bands indicates that the complexes form chemical bonds between the scaffold molecules and Eu3+ during the film formation. These bands are attributed to the ${}^5D_0 \rightarrow {}^7F_J (J = 0, 1, 2, 3, \text{ and 4})$ transitions of Eu³⁺, respectively. These corresponding bands appear at 579, 591, 615, 648 and 697 nm for the films, respectively. Mapping was attempted by microscopic CPL measurement system ^[2] (Fig. 2). The R and S forms were clearly distinguishable in this film. The g_{lum} value, which indicates the degree of polarization of the CPL, was found to be about 0.3 for the film. The g_{lum} value of the film was about 0.3, which is about the same as that in acetonitrile and about 100 times higher than that of the powder.

Keywords: Lanthanide complex; Luminescence; Layer-by-Layer film

本研究では、キラリティとらせん性を加味した Eu 錯体 EuL^{dph} を用い、その膜化により円偏光発光(CPL)の増強を試みた。S 体と R 体の EuL^{dph} は、表面改質させた石英基板上[11]に、湿式成膜法により膜化させた(Fig.1)。Eu 3d XPS 帯の挙動から、この錯体は膜形成時に足場の分子と Eu $^{3+}$ が化学結合を形成している。EuL^{dph} の発光帯は固体で 580,593,615,648 および 684 nm に観測され(λ_{ex} =315 nm)、これらは Eu $^{3+}$ の 5 Do $^{-7}$ F $_{J}$ (J=0,1,2,3 および 4)遷移にそれぞれ帰属される。これらに対応する帯は、膜の場合それぞれ 579,591,615,648 および 697 nm に現れる。顕微分光法による CPL 測定[12]により、マッピングを試みた(Fig. 2)。この膜は、R 体と S 体が明瞭に区別できた。この CPL の偏光の度合いを示す g_{lum} 値は、膜の場合、0.3 程度の値が認められた。これはアセトニトリル中の場合と同程度で、粉末の約 100 倍に相当する。

[1] N. Marets, M. Hasegawa, et al, ACS Omega., 2019, 4, 15512-15520.

[2] H. Koike, K. Nozaki, M. Iwamura, et al, Chem. Asian J., 2020, 15, 85-90.

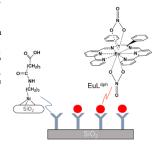


Fig. 1 Schematic representation of LbL film of EuL^{dph} on a quartz substrate.

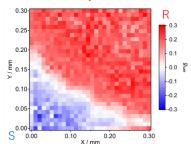


Fig. 2 Microscopic CPL Images for g_{lum} spatial dispersions of R-EuL^{dph} and S-EuL^{dph}.monitored at \sim 590 nm.