Cu-Ni、Cu-Mo、Cu-Rh 触媒を用いた 1,4-ジオキサンの水熱酸化分解に対する温度・圧力の影響 (阪市大院工)○古賀 陸朗・米谷 紀嗣 Temperature and Pressure Effects on Hydrothermal Oxidative Decomposition of 1,4-Dioxane with Cu-Ni, Cu-Mo, and Cu-Rh catalysts (*Graduate School of Engineering, Osaka City University*) \bigcirc Rikuro Koga, Noritsugu Kometani In our laboratory, catalytic hydrothermal oxidative decomposition of persistent organic substances has been studied. Catalytic hydrothermal oxidative decomposition is the combination of hydrothermal oxidation and Fenton-like reaction. Preceding studies have shown that Cu-Ni, Cu-Mo, and Cu-Rh bimetallic catalysts have high catalytic activity at 200°C and 10 MPa. In this study, the decomposition of 1,4-dioxane was conducted at lower temperature and pressure. Also, temperature and pressure effects on this reaction was studied. It was shown that Cu-Ni catalyst at 180 °C and 2 MPa has lower catalytic activity than that at 200 °C and 10 MPa. It was also shown that Cu-Mo and Cu-Rh catalysts have much lower catalytic activities than Cu-Ni catalyst at 180°C and 2 MPa. Compared with preceding studies, much lower activities of the Cu-Mo and Cu-Rh catalysts may be attributed to the effects of catalyst supports, temperature, and pressure. Thus, each of these factors was studied. Keywords: Hydrothermal Oxidation, Fenton-like Reaction, 1,4-Dioxane, Cu-Ni Bimetallic Catalyst, Cu-Rh Bimetallic Catalyst 本研究室では、難分解性有機物質の分解処理技術として、水熱酸化法とフェントン型反応を組み合わせた「触媒促進水熱酸化法」という技術を開発した。先行研究により 200%, 10 MPa で Cu-Ni、Cu-Mo、Cu-Rh 触媒の高い活性が確認された。本研究では、この 3 種類の触媒を用いてより低温度・低圧力での 1,4-ジオキサンの分解を試みるとともに、本技術に対する温度・圧力の影響について調査した。 Fig.1 に、200°C, 10 MPa と 180°C, 2 MPa の条件下で各触媒を用いて分解を行った ときの TOC 除去率を示す。まず、Cu-Ni 触媒の TOC 除去率は、180°C, 2 MPa 条件下 では、200°C、10 MPa 条件下よりも 5%以上低下することがわかった。10 MPa と 2 MPa の圧力差では溶媒の水の物性の変化がほとんど無いため、この低下の原因は温度による影響だと考えられる。また、180°C、2 MPa 条件下で Cu-Mo、Cu-Rh 触媒による TOC 除去率は、同条件下のCu-Ni 触媒よりも 20%以上低いことが分かった。従って、180°C、2 MPa 条件下では Cu-Ni 触媒が最も優れた触媒だといえる。先行研究と比較して、Cu-Mo、Cu-Rh 触媒の著しい活性低下の原因には、触媒担体、温度、圧力の影響が考えられ、それぞれについて調査した。 Fig.1 Removal efficiency of TOC after continuous reaction with Cu-Ni, Cu-Mo, and Cu-Rh bimetallic catalysts: [DO] = 100 ppm, $[H_2O_2] = 14.8$ mM. Flow rate 2.0 mL/min