オキシ水酸化鉄による硝酸からアンモニアの光触媒変換 (阪大院基礎工) ○秋山 翔太郎・白石 康浩・平井 隆之 Photocatalytic nitrate-to-ammonia conversion on iron oxyhydroxides (Graduate School of Engineering Science, Osaka University) O AKIYAMA, Shotaro; SHIRAISHI, Yasuhiro; HIRAI, Takayuki We found that iron oxychloride (β -FeOOH(Cl)) catalysts, when photoirradiated in water containing chloride anion (Cl⁻), successfully reduce nitrate anion (NO₃⁻) to ammonia (NH₃) with almost 100% selectivity using water as an electron donor. Upon photoexcitation of the catalyst, the photogenerated holes are consumed efficiently by the oxidation of its tunnel Cl⁻ (2Cl⁻ \rightarrow Cl₂ + 2e⁻). The formed Cl₂ rapidly reacts with water to form HClO (Cl₂ + H₂O \rightleftharpoons HClO + H⁺ + Cl⁻). The formed HClO absorbs light to be decomposed into O₂ and Cl⁻ (HClO \rightarrow 1/2O₂ + H⁺ + Cl⁻). As a result of these sequential reactions, the holes are consumed by the water oxidation (2H₂O + 4h⁺ \rightarrow O₂ + 4H⁺), while the photoformed conduction band electrons reduce NO₃⁻ to NH₃. The removed tunnel Cl⁻ is compensated by the Cl⁻ in the solution. The cyclic voltammogram obtained using β -FeOOH(Cl)-loaded FTO electrode in the presence of Cl⁻ and NO₃⁻ clearly showed reversible currents of tunneling Cl⁻ oxidation and NO₃⁻ reduction. In contrast, the measurements without Cl⁻ showed decreased currents during the cycles, indicating that the oxidation of the tunnel Cl⁻ leads to irreversible catalyst inactivation. The photoreactions in Cl⁻ solutions therefore promotes stable generation of NH₃. Keywords: Iron oxyhydroxide; Chloride ions; Nitrate; Photocatalysis β-オキシ水酸化鉄 (β-FeOOH(CI)) を、塩化物イオン (CI $^-$) を含む水溶液に懸濁させ、不活性ガス雰囲気下で光照射を行うと、水を電子源として硝酸イオン (NO $_3$ $^-$) からアンモニア (NH $_3$) がほぼ 100%の選択率で生成することを見出した。本反応系で は、触媒の光励起により生成したホールは電荷を 補償するために存在するトンネル Cl-を酸化 (2Cl- $\rightarrow Cl_2 + 2e^-$) して消費される。生成した Cl_2 は速や かに水分子との反応 (Cl₂ + H₂O **⇌** HClO + H⁺ + CI-) により次亜塩素酸 (HCIO) を生成した後、光 分解(HClO → 1/2O₂ + H⁺ + Cl⁻)して O₂ を生成す る。すなわち、水を電子源として NO₃-が還元され る。この際、脱離したトンネル CI-は溶液中の CI-により補填される。Figure 1 に示すように、Cl⁻お よび NO₃-存在下で β-FeOOH(CI)を作用極とする CV 測定を行うと、トンネル Cl-の酸化と NO:環元 にもとづく可逆的な電流が確認され、上述の酸化・ 還元メカニズムが支持された。一方、溶液中に Cl-が存在しない場合には、サイクルを重ねるごとに 電流が減少し、トンネル Cl-の自己酸化により、触 媒が不可逆的に不活性化することが分かった。 たがって、CI-存在下での光反応が水を電子源とす る安定的なNH3生成を進めることが分かった。 **Figure 1**. CV curves obtained with β-FeOOH(Cl)-loaded FTO electrode (550 mM KCl solution, KNO₃, under Ar).