火力発電所排気ガス相当の低濃度・低純度 CO₂ を直接利用したカルバミン酸エステルの合成

(産総研¹・東ソー(株)²) ○小泉 博基¹・竹内 勝彦¹・松本 和弘¹・深谷 訓久¹・佐藤 一彦¹・内田 雅人²・松本 清児²・羽村 敏²・崔 準哲¹

Direct synthesis of carbamic acid ester from low-concentration and low-purity of CO₂ equivalent to thermal power plant exhaust gas (\(^1AIST\), \(^2Tosoh\ Corporation\)) \(\times\) Hiroki Koizumi,\(^1\) Katsuhiko Takeuchi,\(^1\) Kazuhiro Matsumoto,\(^1\) Norihisa Fukaya,\(^1\) Kazuhiko Sato,\(^1\) Masahito Uchida,\(^2\) Seiji Matsumoto,\(^2\) Satoshi Hamura,\(^2\) Jun-Chul Choi\(^1\)

To achieve large scale reduction of CO₂ emissions, it is required to directly utilize low concentration of CO₂ in the thermal power plant exhaust gas for core chemicals synthesis. Carbamic acid esters are known as intermediate raw materials for isocyanates, one of the core chemical products, and environmentally friendly synthesis methods using CO₂ as a raw material have been widely studied. However, these previously reported synthesis methods require to use high purity and high pressure CO₂. In this study, we designed direct synthesis of carbamic acid esters from low purity and low concentration of CO₂ equivalent to exhaust gas of thermal power plant using two types of CO₂ capture mechanism combining DBU with amine and alcohol, respectively. As a result, various carbamic acid esters were obtained in up to 80% isolated yield from the reaction of Ti(IV) tetraalkoxide, a recyclable agent, with carbamic acid salt and alkyl carbonate salt, both of which were synthesized by bubbling of simulated exhaust gas containing 15 vol% CO₂ into the mixture of DBU, amine, and alcohol.

Keywords: CCU; Low Concentration of CO₂; Synthesis of Core Chemicals; Thermal Power Plant Exhaust Gas

 CO_2 排出の大規模な削減を達成するため、火力発電所排気ガス中の CO_2 を直接的に利用し、基幹化成品へと変換する技術が求められている。カルバミン酸エステルは基幹化成品の一つであるイソシアネートの中間原料として知られており、 CO_2 を原料とした環境調和型合成法が広く研究されている。しかし、これらの既存の反応では、高純度・高圧 CO_2 の利用が必要であり、低濃度 CO_2 を直接利用した例は報告されていない。本研究では、有機強塩基である DBU とアミン、アルコールをそれぞれ組み合わせた 2 種類の CO_2 捕集機構を利用することで、カルバミン酸エステルを火力発電所排気ガスに相当する低濃度・低純度な CO_2 から直接的に合成する手法の開発に取り組んだ。その結果、15 vol%の CO_2 を含む模擬排気ガスを DBU、アミン、アルコール混合溶液にバブリングすることで合成したカルバミン酸塩およびアルキル炭酸塩に対して、再生可能な反応剤である Ti(IV)テトラアルコキシドを作用させることで、種々のカルバミン酸エステルを最大単離収率 80%で得ることに成功した。

$$RNH_2 + R'OH + DBU \xrightarrow{15 \text{ vol}\% CO_2} \left[R' \overset{H}{\overset{}_{H}} \right] + \left[R' \overset{O}{\overset{}_{H}} \right] \left[\overset{N}{\overset{}_{H}} \right] \left[\overset{N}{\overset{N}} \right] \left[\overset{N}{\overset{}_{H}} \right] \left[\overset{N}{\overset{N}} \right] \left[\overset{N}{\overset{N}}$$

謝辞:この成果は「NEDO 先導研究プログラム/未踏チャレンジ 2050」による委託 業務の結果得られたものです。

1) Yuan, H. Y. and J.-C. Choi et al. Bull. Chem. Soc. Jpn. 91, 1481-1486 (2018).